Определение индукции магнитного поля на оси кругового тока. Магнитное поле в центре кругового проводника с током Расчет магнитной индукции в центре кругового тока

Напряженность магнитного поля на оси кругового тока (рис. 6.17-1), создаваемого элементом проводника Idl , равна

поскольку в данном случае

Рис. 6.17. Магнитное поле на оси кругового тока (слева) и электрическое поле на оси диполя (справа)

При интегрировании по витку вектор будет описывать конус, так что в результате «выживет» только компонента поля вдоль оси 0z . Поэтому достаточно просуммировать величину

Интегрирование

выполняется с учетом того, что подынтегральная функция не зависит от переменной l , а

Соответственно, полная магнитная индукция на оси витка равна

В частности, в центре витка (h = 0) поле равно

На большом расстоянии от витка (h >> R ) можно пренебречь единицей под радикалом в знаменателе. В результате получаем

Здесь мы использовали выражение для модуля магнитного момента витка Р m , равное произведению I на площадь витка Магнитное поле образует с круговым током правовинтовую систему, так что (6.13) можно записать в векторной форме

Для сравнения рассчитаем поле электрического диполя (рис. 6.17-2). Электрические поля от положительного и отрицательного зарядов равны, соответственно,

так что результирующее поле будет

На больших расстояниях (h >> l ) имеем отсюда

Здесь мы использовали введенное в (3.5) понятие вектора электрического момента диполя . Поле Е параллельно вектору дипольного момента, так что (6.16) можно записать в векторной форме

Аналогия с (6.14) очевидна.

Силовые линии магнитного поля кругового витка с током показаны на рис. 6.18. и 6.19

Рис. 6.18. Силовые линии магнитного поля кругового витка с током на небольших расстояниях от провода

Рис. 6.19. Распределение силовых линий магнитного поля кругового витка с током в плоскости его оси симметрии.
Магнитный момент витка направлен по этой оси

На рис. 6.20 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг кругового витка с током. Толстый медный проводник пропущен через отверстия в прозрачной пластинке, на которую насыпаны железные опилки. После включения постоянного тока силой 25 А и постукивания по пластинке опилки образуют цепочки, повторяющие форму силовых линий магнитного поля.

Магнитные силовые линии для витка, ось которого лежит в плоскости пластинки, сгущаются внутри витка. Вблизи проводов они имеют кольцевую форму, а вдали от витка поле быстро спадает, так что опилки практически не ориентируются.

Рис. 6.20. Визуализация силовых линий магнитного поля вокруг кругового витка с током

Пример 1. Электрон в атоме водорода движется вокруг протона по окружности радиусом а B = 53 пм (эту величину называют радиусом Бора по имени одного из создателей квантовой механики, который первым вычислил радиус орбиты теоретически) (рис. 6.21). Найти силу эквивалентного кругового тока и магнитную индукцию В поля в центре окружности.

Рис. 6.21. Электрон в атоме водорода а B = 2,18·10 6 м/с. Движущийся заряд создает в центре орбиты магнитное поле

Этот же результат можно получить с помощью выражения (6.12) для поля в центре витка с током, силу которого мы нашли выше

Пример 2. Бесконечно длинный тонкий проводник с током 50 А имеет кольцеобразную петлю радиусом 10 см (рис. 6.22). Найти магнитную индукцию в центре петли.

Рис. 6.22. Магнитное поле длинного проводника с круговой петлей

Решение. Магнитное поле в центре петли создается бесконечно длинным прямолинейным проводом и кольцевым витком. Поле от прямолинейного провода направлено ортогонально плоскости рисунка «на нас», его величина равна (см. (6.9))

Поле, создаваемое кольцеобразной частью проводника, имеет то же направление и равно (см. 6.12)

Суммарное поле в центре витка будет равно

Дополнительная информация

http://n-t.ru/nl/fz/bohr.htm - Нильс Бор (1885–1962);

http://www.gumer.info/bibliotek_Buks/Science/broil/06.php - теория Бора атома водорода в книге Луи де Бройля «Революция в физике»;

http://nobelprize.org/nobel_prizes/physics/laureates/1922/bohr-bio.html - Нобелевские премии. Нобелевская премия по физике 1922 г. Нильс Бор.

Все элементы (dl) кругового тока создают в центре круга индукцию (dB);

откуда (61)

(62)

Закон Ампера устанавливает силу, действующую на проводник с током (модуль силы) в магнитном поле:

Направление силы Ампера определяется с помощью правила левой руки.

Взаимодействие двух проводников. Рассмотрим взаимодействие двух бесконечных прямолинейных параллельных проводников с токами и , находящихся на расстоянии R.

Используя закон Ампера (63) и формулу для магнитной индукции (60), учитывая, что для силы взаимодействия двух токов получим

(64)

Сила Лоренца – сила, действующая на заряд, движущийся в магнитном поле:

(65) или (66)

Направление силы определяется с помощью правила левой руки (на положительный заряд).

Радиус вращения r найдем из равенства

(67)

Период обращения:

(68), отсюда (69) т.е. период движения частиц не зависит от их скорости. Это используется в ускорителях элементарных частиц – циклотронах.

Ускорители делятся на: линейные, циклические и индукционные. Для ускорения релятивистских частиц используют: фазотрон – увеличивается частота переменного электрического поля, синхротрон – увеличивается магнитное поле, синхрофазотрон – увеличивается частота и магнитное поле.

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная

(70)

(71) где - проекция вектора на направление нормали ,

α – угол между и

Cуммарное значение потока:

. (72)

Рассмотрим в качестве примера магнитное поле бесконечного прямолинейного проводника с током I , находящегося в вакууме. Циркуляция вектора вдоль произвольной линии магнитной индукции – окружности радиуса r:
Т.к. во всех точках линии индукции равен по модулю и направлен по касательной к линии, так что , следовательно:
Т.е. циркуляция вектора магнитной индукции в вакууме одинакова вдоль всех линий магнитной индукции и равна произведению магнитной постоянной на силу тока. Таков вывод справедлив для любого произвольного замкнутого контура, если внутри его протекает ток. Если контур не охватывает ток, то циркуляция вектора вдоль этого контура равна 0. Если токов много, то берется алгебраическая сумма токов.

Теорема: Циркуляция магнитной индукции поля в вакууме вдоль произвольного замкнутого контура L равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром. Этот закон можно также записать:

(73)

Лекция 9

3.2.(2часа) Магнитные свойства вещества. Молекулярные токи. Диа -, пара – и ферромагнетики. Вектор намагниченности. Магнитная восприимчивость и магнитная проницаемость. Представление о ядерном магнитном резонансе и электронном парамагнитном резонансе.

Магнитные моменты электронов и атомов. Все вещества, помещенные в магнитное поле, намагничиваются. С точки зрения строения атомов, электрон, движущийся по круговой орбите обладает орбитальным магнитным моментом:

(74) его модуль

(75) где - сила тока,

Частота вращения,

S – площадь орбиты.

Направление вектора определяется правилом буравчика. Электрон, движущийся по орбите, обладает также механическим моментом импульса , модуль которого

- орбитальный механический момент электрона. (76) где ,

.

Направления и противоположные, т.к. заряд электрона отрицательный. Из (75) и (76) получим

(77) где - гиромагнитное отношение. (78)

Формула справедлива и для некруговых орбит. Экспериментально величину g определили Эйнштейн и де Гааз (1915). Оно оказалось равным , т.е в два раза большим, чем (78). Тогда было предположено, а в последствии доказано, что кроме орбитальных моментов электрон обладает собственным механическим моментом импульса , называемым спином. Спину электрона соответствует собственный (спиновый) магнитный момент : . Величина называется гиромагнитным отношением спиновых моментов. Проекция собственного магнитного момента на направление вектора может принимать только одно из следующих двух значений ±еħ/2m= , где ħ= , h – постоянная Планка, - магнетон Бора, являющийся единицей магнитного момента электрона. Общий магнитный момент атома (молекулы) равен векторной сумме магнитных моментов (орбитальных и спиновых) электронов: .

Диа – и парамагнетизм. Всякое вещество является магнетиком , т.е. оно способно под действием магнитного поля приобретать магнитный момент, т.е. намагничиваться.

Если орбита электрона ориентирована относительно вектора внешнего поля произвольным образом, составляя с ним ےα, то орбита и вектор придут во вращение, которое называется прецессией (движение волчка). Прецессионное движение эквивалентно току. Наведенные составляющие магнитных полей атомов складываются и образуют собственное магнитное поле вещества, которое накладывается на внешнее магнитное поле и внутри магнетика образуется результирующее магнитное поле.

Диамагнетики – это такие вещества, в которых уменьшается магнитное поле. Для них магнитная проницаемость немного меньше 1 составляет μ ≈ 0,999935. (Объясняется действием правила Ленца). Диамагнетизм свойственен всем веществам.

Парамагнетики – вещества, в которых увеличивается магнитное поле при действии внешнего поля, для них μ больше 1, например, μ ≈ 1,00047. К парамагнетикам относятся редкоземельные элементы: Pt, Al, CuSO 4 и т.д. Объясняется ориентацией орбитальных и спиновых магнитных моментов атомов в магнитном поле. При прекращении действия внешнего магнитного поля ориентация разрушается тепловым движением атомов и парамагнетик размагничивается. Магнитная проницаемость парамагнетиков превышает таковую для диамагнетиков.

Для количественного описания намагничивания магнетиков вводят векторную величину – намагниченность , определяемую магнитным моментом единицы объема магнетика:

(79) где - магнитный момент магнетика, представляющий собой векторную сумму магнитных моментов отдельных молекул. Вектор результирующего магнитного поля в магнетике равен векторной сумме магнитных индукций внешнего поля и поля микротоков (молекулярных токов) : , отсюда В несильных полях намагниченность пропорциональна напряженности поля, вызывающего намагничивание, т.е. , где χ –магнитная восприимчивость вещества. Для диамагнетиков она отрицательна, для парамагнетиков – положительна. Из вышеприведенных формул: Здесь , используя эту формулу придем к известной формуле

Явление электронного парамагнитного резонанса было открыто в Казани в 1945 году ученым Е.К.Завойским, сотрудником Казанского университета. Сущность явления заключается в резонансном поглощении высокочастотного электромагнитного поля при его воздействии на парамагнитное вещество, которое находится в постоянном магнитном поле. При этом частота Ларморовой процессии спинов электронов совпадает с частотой внешнего электромагнитного поля и электрон поглощает эту энергию.

Магнитные моменты ядер атомов значительно слабее магнитных моментов электронов, поэтому ядерный магнитный резонанс был открыт позже, чем электронный, 1949 году в США. Процесс аналогичен электронному, но получил более широкое применение для исследования веществ. Вершиной этого применения является создание ЯМР – томографов.

Ферромагнетики. К ним относятся: железо, кобальт, никель, гадолиний, их сплавы и соединения. μ>>1, составляет несколько тысяч.

I нас – магнитное насыщение.

При насыщении ориентируется все большее количество магнитных моментов.

Характерной особенностью ферромагнетиков является то, что для них зависимость I от Н (а следовательно В от Н) имеет вид петли, которая получила название петли гистерезиса: 0 – размагниченный; 1 – насыщение (); 2 – остаточная намагниченность (), постоянные магниты; 3 – размагничивание ( – коэрцитивная сила); дальше – повторяется.

Ферромагнетики с малой коэрцитивной силой называются 1)мягкими, а с большой коэрцитивной силой – 2)жесткими. Первые применяются для сердечников трансформаторов и электрических машин (двигателей и генераторов), вторые – для постоянных магнитов. Точка Кюри – температура, при которой ферромагнетик теряет магнитные свойства и превращается в парамагнетик. Процесс намагничивания ферромагнетиков сопровождается изменением их линейных размеров и объема. Это явление получило название магнитострикция. Ферромагнетики имеют доменную структуру: микроскопические объемы, в которых магнитные моменты ориентированы одинаково. В ненамагниченном состоянии магнитные моменты доменов направлены хаотично и результирующее поле равно нулю. При намагничивании ферромагнетика магнитные моменты доменов скачкообразно поворачиваются и устанавливаются вдоль поля и ферромагнетик намагничивается. Как только сориентируются все домены, так намагниченность достигает насыщения. При остаточной намагниченности () – ориентированы часть доменов.

Существуют антиферромагнетики (соединения MnO, MnF 2 , FeO, FeCl 2).

В последнее время большое значение приобрели ферриты – полупроводниковые ферромагнетики, химические соединения типа , где Ме – ион двухвалентного металла (Mn, Co, Ni, Cu, Zn, Cd, Fe). Они обладают заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллионы раз больше чем у металлов). Нашли широкое применение в электротехнике и радиотехнике.

Рассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющему форму окружности радиуса R (круговой ток). Определим магнитную индукцию в центре кругового тока (рис. 47.1).

Каждый элемент тока создает в центре индукцию, направленную вдоль положительной нормали к контуру. Поэтому векторное сложение сводится к сложению их модулей. По формуле (42.4)

Проинтегрируем это выражение по всему контуру:

Выражение в скобках равно модулю дипольного магнитного момента (см. (46.5)).

Следовательно, магнитная индукция в центре кругового тока имеет величину

Из рис. 47.1 видно, что направление вектора В совпадает с направлением положительной нормали к контуру, т. е. с направлением вёктора Поэтому формулу (47.1) можно написать в векторном виде:

Теперь найдем В на оси кругового тока на расстоянии от центра контура (рис. 47.2). Векторы перпендикулярны к плоскостям, проходящим через соответствующий элемент и точку, в которой мы ищем поле. Следовательно, они образуют симметричный конический веер (рис. 47.2, б). Из соображений симметрии можно заключить, что результирующий вектор В направлен вдоль оси контура. Каждый из составляющих векторов вносит в результирующий вектор вклад равный по модулю Угол а между и b прямой, поэтому

Проинтегрировав по всему контуру и заменив на получим

Эта формула определяет величину магнитной индукции на оси кругового тока. Приняв во внимание, что векторы В и имеют одинаковое направление, можно написать формулу (47.3) в векторном виде:

Это выражение не зависит от знака г. Следовательно, в точках оси, симметричных относительно центра тока, В имеет одинаковую величину и направление.

При формула (47.4) переходит, как и должно быть, в формулу (47.2) для магнитной индукции в центре кругового тока.

На больших расстояниях от контура в знаменателе можно пренебречь по сравнению с Тогда формула (47.4) принимает вид

аналогичный выражению (9.9) для напряженности электрического поля на оси диполя.

Расчет, выходящий за рамки данной книги, дает, что любой системе токов или движущихся зарядов, локализованной в ограниченной части пространства, можно приписать магнитный дипольный момент (ср. с дипольным электрическим моментом системы зарядов). Магнитное поле такой системы на расстояниях, больших по сравнению с ее размерами, определяется через по таким же формулам, по каким определяется через дипольный электрический момент поле системы зарядов на больших расстояниях (см. § 10). В частности, поле плоского контура любой формы на больших расстояниях имеет вид

где - расстояние от контура до данной точки, - угол между направлением вектора и направлением от контура в данную точку поля (ср. с формулой (9.7)). При формула (47.6) дает для модуля вектора В такое же значение, как и формула (47.5).

На рис. 47.3 изображены линии магнитной индукции поля кругового тока. Показаны лишь линии, лежашие в одной из плоскостей, Проходящей через ось тока. Подобная же картина имеет место в любой из этих плоскостей.

Из всего сказанного в предыдущем и в данном параграфах вытекает, что дипольный магнитный момент является весьма важной характеристикой контура с током. Этой характеристикой определяется как поле, создаваемое контуром, так и поведение контура во внешнем магнитном поле.

Вначале решим более общую задачу нахождения магнитной индукции на оси витка с током. Для этого сделаем рисунок 3.8, на котором изобразим элемент тока и вектор магнитной индукции , который он создает на оси кругового контура в некоторой точке .

Рис. 3.8 Определение магнитной индукции

на оси кругового витка с током

Вектор магнитной индукции , создаваемый бесконечно малым элементом контура может быть определен с помощью закона Био-Савара-Лапласа (3.10).

Как следует из правил векторного произведения, магнитная индукция будет перпендикулярна плоскости, в которой лежат вектора и , поэтому модуль вектора будет равен

.

Для нахождения полной магнитной индукции от всего контура необходимо векторно сложить от всех элементов контура, т. е. фактически сосчитать интеграл по длине кольца

Данный интеграл можно упростить, если представить в виде суммы двух составляющих и

При этом в силу симметрии , поэтому результирующий вектор магнитной индукции будет лежать на оси . Следовательно, для нахождения модуля вектора нужно сложить проекции всех векторов , каждая из которых равна

.

Учитывая, что и , получим для интеграла следующее выражение

Нетрудно заметить, что вычисление получившегося интеграла даст длину контура, т. е. . В итоге суммарная магнитная индукция, создаваемая круговым контуром на оси в точке , равна

. (3.19)

Используя магнитный момент контура, формулу (3.19) можно переписать следующим образом

.

Теперь отметим, что полученное в общем виде решение (3.19) позволяет проанализировать предельный случай, когда точка помещена в центре витка. В этом случае и решение для магнитной индукции поля в центре кольца с током примет вид

Результирующий вектор магнитной индукции (3.19) направлен вдоль оси тока, а его направление связано с направлением тока правилом правого винта (рис. 3.9).

Рис. 3.9 Определение магнитной индукции

в центре кругового витка с током

Индукция магнитного поля в центре дуги окружности

Данная задача может быть решена как частный случай рассмотренной в предыдущем пункте задачи. В этом случае интеграл в формуле (3.18) следует брать не по всей длине окружности, а только по ее дуге l . А также учесть то, что индукция ищется в центре дуги, поэтому . В результате получим

, (3.21)

где – длина дуги; – радиус дуги.

5 Вектор индукции магнитного поля движущегося в вакууме точечного заряда (без вывода формулы)

,

где – электрический заряд; – постоянная нерелятивистская скорость; – радиус-вектор, проведенный от заряда к точке наблюдения.

Силы Ампера и Лоренца

Опыты по отклонению рамки с током в магнитном поле показывают, что на всякий проводник с током, помещенный в магнитное поле, действует механическая сила, называемая силой Ампера .

Закон Ампера определяет силу, действующую на проводник с током, помещенный в магнитное поле:

; , (3.22)

где – сила тока; – элемент длины провода (вектор совпадает по направлению с током ); – длина проводника. Сила Ампера перпендикулярна направлению тока и направлению вектора магнитной индукции.

Если прямолинейный проводник длиной находится в однородном поле, то модуль силы Ампера определяется выражением (рис. 3.10):

Сила Ампера всегда направлена перпендикулярно плоскости, содержащей векторы и , а ее направление как результат векторного произведения определяется правилом правого винта: если смотреть вдоль вектора , то поворот от к по кратчайшему пути должен происходить по часовой стрелке.

Рис. 3.10 Правило левой руки и правило буравчика для силы Ампера

С другой стороны, для определения направления силы Ампера можно также применить мнемоническоеправило левой руки (рис. 3.10): нужно поместить ладонь так, чтобы силовые линии магнитной индукции входили в нее, вытянутые пальцы показывали направление тока, тогда отогнутый большой палец укажет направление силы Ампера.

Исходя из формулы (3.22), найдем выражение для силы взаимодействия двух бесконечно длинных, прямых, параллельных друг другу проводников, по которым текут токи I 1 и I 2 (рис. 3.11) (опыт Ампера). Расстояние между проводами равно a.

Определим силу Ампера dF 21 , действующую со стороны магнитного поля первого тока I 1 на элемент l 2 dl второго тока.

Величина магнитной индукции этого поля B 1 в точке расположения элемента второго проводника с током равна

Рис. 3.11 Опыт Ампера по определению силы взаимодействия

двух прямолинейных токов

Тогда с учетом (3.22) получим

. (3.24)

Рассуждая точно так же, можно показать, что сила Ампера, действующая со стороны магнитного поля, создаваемого вторым проводником с током, на элемент первого проводника I 1 dl , равна

,

т. e. dF 12 = dF 21 . Таким образом, мы вывели формулу (3.1), которая была получена Ампером экспериментальным путем.

На рис. 3.11 показано направление сил Ампера. В случае, когда токи направлены в одну и ту же сторону, то это ‑ силы притяжения, а в случае токов разного направления ‑ силы отталкивания.

Из формулы (3.24), можно получить силу Ампера, действующую на единицу длины проводника

. (3.25)

Таким образом, сила взаимодействия двух параллельных прямых проводников с токами прямо пропорциональна произведению величин токов и обратно пропорциональна расстоянию между ними .

Закон Ампера утверждает, что на элемент с током, помещенный в магнитное поле, действует сила. Но всякий ток есть перемещение заряженных частиц. Естественно предположить, что силы, действующие на проводник с током в магнитном поле, обусловлены силами, действующими на отдельные движущиеся заряды. Этот вывод подтверждается рядом опытов (например, электронный пучок в магнитном поле отклоняется).

Найдем выражение для силы, действующей на заряд, движущийся в магнитном поле, исходя из закона Ампера. Для этого в формулу, определяющую элементарную силу Ампера

подставим выражение для силы электрического тока

,

где I – сила тока, протекающего через проводник; Q – величина полного заряда протекшего за время t ; q – величина заряда одной частицы; N – общее число заряженных частиц, прошедших через проводник объемом V , длиной l и сечением S; n – число частиц в единице объема (концентрация); v – скорость частицы.

В результате получим:

. (3.26)

Направление вектора совпадаёт с направлением скорости v , поэтому их можно поменять местами.

. (3.27)

Эта сила действует на все движущиеся заряды в проводнике длиной и сечением S , число таких зарядов:

Следовательно, сила, действующая на один заряд, будет равна:

. (3.28)

Формула (3.28) определяет силу Лоренца , величина которой

где a - угол между векторами скорости частицы и магнитной индукции.

В экспериментальной физике часто встречается ситуация, когда заряженная частица движется одновременно и в магнитном и электрическом поле. В этом случае рассматривают полную силу Лоренца в виде

,

где – электрический заряд; – напряженность электрического поля; – скорость частицы; – индукция магнитного поля.

Только в магнитном поле на движущуюся заряженную частицу действует магнитная составляющая силы Лоренца (рис. 3.12)

Рис. 3.12 Сила Лоренца

Магнитная составляющая силы Лоренца перпендикулярна вектору скорости и вектору магнитной индукции. Она не изменяет величины скорости, а изменяет только ее направление, следовательно, работы не совершает.

Взаимная ориентация трех векторов ‑ , и , входящих в (3.30), показана на рис. 313 для положительно заряженной частицы.

Рис. 3.13 Сила Лоренца, действующая на положительный заряд

Как видно из рис. 3.13, если частица влетает в магнитное поле под углом к силовым линиям , то она равномерно движется в магнитном поле по окружности радиусом и периодом обращения:

где – масса частицы.

Отношение магнитного момента к механическому L (моменту импульса) заряженной частицы, движущейся по круговой орбите,

где ‑ заряд частицы; т ‑ масса частицы.

Рассмотрим общий случай движения заряженной частицы в однородном магнитном поле, когда ее скорость направлена под произвольным углом a к вектору магнитной индукции (рис. 3.14). Если заряженная частица влетает в однородное магнитное поле под углом , то она движется по винтовой линии.

Разложим вектор скорости на составляющие v || (параллельную вектору ) и v ^ (перпендикулярную вектору ):

Наличие v ^ приводит к тому, что на частицу будет действовать сила Лоренца и она будет двигаться по окружности радиусом R в плоскости перпендикулярной вектору :

.

Период такого движения (время одного витка частицы по окружности) равен

.

Рис. 3.14 Движение по винтовой линии заряженной частицы

в магнитном поле

За счет наличия v || частица будет двигаться равномерно вдоль , так как на v || магнитное поле не действует.

Таким образом, частица участвует одновременно в двух движениях. Результирующая траектория движения представляет собой винтовую линию, ось которой совпадает с направлением индукции магнитного поля. Расстояние h между соседними витками называется шагом винтовой линии и равно:

.

Действие магнитного поля на движущийся заряд находит большое практическое применение, в частности, в работе электронно-лучевой трубки, где используется явление отклонения заряженных частиц электрическим и магнитным полями, а также в работе масс-спектрографов, позволяющих определить удельный заряд частиц (q/m ) и ускорителей заряженных частиц (циклотронов).

Рассмотрим один такой пример, назыаемый «магнитной бутылкой» (рис. 3.15). Пусть неоднородное магнитное поле создано двумя витками с токами, протекающими в одном направлении. Сгущение линий индукции в какой-либо пространнственной области означает большее значение величины магнитной индукции в этой области. Индукция магнитного поля вблизи витков с током больше, чем в пространстве между ними. По этой причине радиус винтовой линии траектории частицы, обратно пропорциональный модулю индукции, меньше вблизи витков, чем в пространстве между ними. После того, как частица, двигаясь вправо по винтовой линии, пройдет среднюю точку, сила Лоренца, действующая на чатицу, приобретает компоненту , тормозящую ее движение вправо. В определенный момент эта компонента силы останавливает движение частицы в этом направлении и отталкивает ее влево к витку 1. При приближении заряженной частицы к витку 1 она также тормозится и начинает циркулировать между витками, оказавшись в магнитной ловушке, или между «магнитными зеркалами». Магнитные ловушки используются для удержания в определенной области пространства высокотемпературной плазмы ( К) при управляемом термоядерном синтезе.

Рис. 3.15 Магнитная «бутылка»

Закономерностями движения заряженных частиц в магнитном поле можно объяснить особенности движения космических лучей вблизи Земли. Космические лучи – это потоки заряженных частиц большой энергии. При приближении к поверхности Земли эти частицы начинают испытывать действие магнитного поля Земли. Те из них, которые направляются к магнитным полюсам, будут двигаться почти вдоль линий земного магнитного поля и навиваться на них. Заряженные частицы, подлетающие к Земле вблизи экватора, направлены почти перпендикулярно к линиям магнитного поля, их траектория будет искривляться. и лишь самые быстрые из них достигнут поверхности Земли (рис. 3.16).

Рис. 3.16 Образование Полярного сияния

Поэтому интенсивность космических лучей доходящих до Земли вблизи экватора, заметно меньше, чем вблизи полюсов. С этим связан тот факт что, Полярное сияние наблюдается главным образом в приполярных областях Земли.

Эффект Холла

В 1880г. американский физик Холл провел следующий опыт: он пропускал постоянный электрический ток I через пластинку из золота и измерял разность потенциалов между противолежащими точками A и C на верхней и нижней гранях (рис. 3.17).

Пусть постоянный электрический ток силой I протекает по плоскому круглому контуру радиуса R. Найдем индукцию поля в центре кольца в точке O
 Мысленно разобьем кольцо на малые участки, которые можно считать прямолинейными, и применим закон Био-Саварра-Лапласа для определения индукции поля, создаваемого этим элементом, в центре кольца. В данном случае вектор элемента тока (IΔl)k и вектор rk, соединяющий данный элемент с точкой наблюдения (центр кольца), перпендикулярны, поэтому sinα = 1. Вектор индукции поля, созданного выделенным участком кольца, направлен вдоль оси кольца, а его модуль равен

Для любого другого элемента кольца ситуация абсолютно аналогична − вектор индукции также направлен по оси кольца, а его модуль определяется формулой (1). Поэтому суммирование этих векторов выполняется элементарно и сводится к суммированию длин участков кольца

Усложним задачу − найдем индукцию поля в точке A, находящейся на оси кольца на расстоянии z от его центра.
 По-прежнему, выделяем малый участок кольца (IΔl)k и строим вектор индукции поля ΔBk, созданным этим элементом, в рассматриваемой точке. Это вектор перпендикулярен вектору r, соединяющему выделенный участок с точкой наблюдения. Векторы (IΔl)k и rk, как и ранее, перпендикулярны, поэтому sinα = 1. Так кольцо обладает осевой симметрией, то суммарный вектор индукции поля в точке A должен быть направлен по оси кольца. К этому же выводу о направлении суммарного вектора индукции можно прийти, если заметить, что каждому выделенному участку кольца имеется симметричный ему с противоположной стороны, а сумма двух симметричных векторов направлена вдоль оси кольца. Таким образом, для того чтобы определить модуль суммарного вектора индукции, необходимо просуммировать проекции векторов на ось кольца. Эта операция не представляет особой сложности, если учесть, расстояния от всех точек кольца до точки наблюдения одинаковы rk = √{R2+ z2}, а также одинаковы углы φ между векторами ΔBk и осью кольца. Запишем выражение для модуля искомого суммарного вектора индукции

Из рисунка следует, что cosφ = R/r, с учетом выражения для расстояния r, получим окончательное выражение для вектора индукции поля

Как и следовало ожидать, в центре кольца (при z = 0) формула (3) переходит в полученную ранее формулу (2).

Используя общий рассматриваемый здесь метод, можно рассчитать индукцию поля в произвольной точке. Рассматриваемая система обладает осевой симметрией, поэтому достаточно найти распределение поля в плоскости, перпендикулярной плоскости кольца и проходящей через его центр. Пусть кольцо лежит в плоскости xOy(рис. 433), а поле рассчитывается в плоскости yOz. Кольцо следует разбить на малые участки, видимые из центра под углом Δφ и просуммировать поля создаваемые этими участками. Можно показать (попробуйте проделать это самостоятельно), что компоненты вектора магнитной индукции поля, создаваемого одним выделенным элементом тока, в точке с координатами (y, z) рассчитываются по формулам:



Рассмотрим выражение для индукции поля на оси кольца на расстояниях значительно больших радиуса кольца z >> R. В этом случае формула (3) упрощается и приобретает вид

Где IπR2 = IS = pm − произведение силы тока на площадь контура, то есть магнитный момент кольца. Эта формула совпадает (если как обычно, заменить μo в числителе на εo в знаменателе) с выражением для напряженности электрического поля диполя на его оси.
 Такое совпадение не случайно, более того, можно показать, что подобное соответствие справедливо для любой точки поля, находящейся на больших расстояниях от кольца. Фактически малый контур с током является магнитным диполем (два одинаковых малых противоположно направленных элемента тока) − поэтому его поле совпадает с полем электрического диполя. Чтобы ярче подчеркнуть этот факт, приведена картина силовых линий магнитного поля кольца, на больших расстояниях от него (сравните с аналогичной картиной для поля электрического диполя).