Законы организации экосистем необходимые компоненты экосистемы. Экосистемы

Первый, основной, принцип функционирования экосистем: получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов.Таким образом,главная особенность природной экосистемы состоит в том, что в ней происходит круговорот веществ. Основной причиной неустойчивости экосистемы является несбалансированность круговорота веществ.

Второй основной принцип функционирования экосистем: существование за счет не загрязняющей воздух и практически вечной солнечной энергии, количество которой постоянно и избыточно.

Функциями экосистем являются:

Синтез органического вещества;

Деструкция органического вещества;

Круговорот веществ;

Поток энергии для жизнедеятельности организмов.

В каждую экосистему входят группы организмов разных видов, различаемых по способу питания:

Автотрофы(продуценты);

Гетеротрофы (консументы, детритофаги, редуценты).

3.2.4. Биологическая продуктивность экосистем

Все живые компоненты экосистемы - продуценты, консументы и редуценты - образуют биомассу («живой вес»). Биомасса - это органическое вещество, имеющееся в экосистеме в данный конкретный момент. Биомассу выражают в единицах массы на единицу площади, например [тонна/га, г/кв.м ].

Прирост биомассы за единицу времени называется продуктивностью экосистемы . Продуктивность выражают в единицах массы на единицу площади за единицу времени, например [тонна/га/год, г/кв.м./месяц ].

В связи с тем, что органическое вещество создается на разных трофических уровнях, различают и уровни продуцирования, на которых создается первичная и вторичная продукция .

Органическая масса, создаваемая продуцентами в процессе фото- и хемосинтеза в единицу времени, называется первичной продукцией , а прирост за единицу времени биомассы, создаваемой консументами -вторичной продукцией .

Первичную продукцию также подразделяют на два уровня -валовую и чистую продукцию.

Валовая первичная продукция - общая биомасса, созданная растениями (продуцентами) в процессе фиксирования лучистой энергии Солнца (фотосинтеза). При этом энергия Солнца переходит в химическую энергию связей органических веществ.

6СО 2 + 12Н 2 О + энергия Солнца → С 6 H 12 О 6 + 6О 2 + 6H 2 О

Эффективность усвоения растениями энергии Солнца (КПД фотосинтеза) составляет 0,1- 5%.

Часть образованных органических веществ окисляется, при этом высвобождается энергия. Эта энергия (так называемые «траты на дыхание») расходуется на поддержание жизнедеятельности растений (добычи из почвы воды, солей). Растения тратят на «дыхание» от 40 до 70% от валовой продукции.

Та часть валовой продукции, которая осталась после трат на «дыхание», называется чистой первичной продукцией . Чистая первичная продукция («урожай» экосистемы - прирост растений, плоды, семена) или служит кормом консументам и редуцентам, или накапливается в биосфере.

Количество энергии, превращенное в биомассу всех консументов, называют вторичной продукцией экосистемы .

В стабильных экосистемах биомасса остается постоянной, то есть вся продукция расходуется в цепях питания. Если скорость потребления биомассы консументами отстает от скорости прироста растений, происходит постепенное накопление мертвого органического вещества (заторфовывание болот, образование лесной подстилки).

Самой высокой продуктивностью биомассы обладают тропические леса, самой низкой - пустыни и тундры.

Поскольку на питание консументов идет только чистая первичная продукция, целесообразно увеличивать ее долю в валовой продукции, то есть снижать «траты на дыхание». С этой целью необходимо прикладывать дополнительные усилия (энергию) при выращивании растений (проводить рыхление, полив, прополку). Дополнительный вклад энергии называется энергетической субсидией , а ведение сельского хозяйства с применением энергетических субсидий называют интенсивным , или индустриальным . Интенсивное ведение сельского хозяйства является очень дорогостоящим, так как при этом затрачиваются огромные количества энергии, что делает высокие уровни продукции невыгодными. Эту закономерность называют «законом снижения эффективности энергозатрат» К. Тюрго .

3.2.5. Перенос энергии в экосистемах

Энергия необходима организмам для их жизнедеятельности: роста, развития, размножения.

Главным источником энергии для всех экосистем Земли является Солнце. В соответствии с I законом термодинамики зеленые растения (автотрофы ) в процессе фотосинтеза превращают энергию солнечного света в химическую энергию, заключенную в молекулах синтезированных ими органических веществ.

Фотосинтез - это процесс образования (синтеза) органических соединений из неорганических веществ, идущий за счет световой энергии. При фотосинтезе за счет энергии Солнца углерод включается в органические соединения, составляющие основу живых организмов, а кислород высвобождается и обеспечивает обогащение атмосферы Земли.

6СО 2 + 12Н 2 О + энергия → С 6 Н 12 О 6 + 6О 2 + 6Н 2 О

Для осуществления фотосинтеза растениям необходим хлорофилл - вещество зеленого цвета, поглощающее солнечные лучи. Хлорофилл содержится во внутренних мембранах хлоропластов - специальных отделах растительной клетки.

Фотосинтезпроходит в две стадии: световую и темновую. В световой фазе фотосинтеза энергия солнечного излучения используется хлоропластами для синтеза АТФ (аденозинтрифосфорной кислоты) - вещества, особо богатого энергией, используемого клеткой для всех дальнейших процессов жизнедеятельности. Световая фаза идет только при свете, при этом происходит фотолиз воды с образованием молекулярного кислорода, электронов и протонов по уравнению:

2Н 2 О→4Н + +О 2 +4е

В темновой фазе из диоксида углерода и водорода при участии ферментов образуется глюкоза:

6СО 2 +24Н + С 6 Н 12 О 6 +6Н 2 О

Углеводы, получившиеся в процессе фотосинтеза, используются как исходный материал при последующем синтезе других органических соединений.

Организмы-гетеротрофы разрывают химические связи в сложных молекулах пищевых веществ, получая при этом энергию и простые вещества, и строят свои структуры. Реакция окисления пищи вдыхаемым кислородом происходит по реакции, обратной реакции фотосинтеза:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 12Н 2 О + {энергия}

Помимо автотрофов органическое вещество в природе могут синтезировать хемотрофы(хемоавтотрофы) – бактерии, использующие не световую, а химическую энергию, получаемую ими за счет окисления неорганических соединений (серы, водорода, аммиака, азота, железа и др.). К хемосинтезу способны только хемосинтезирующие бактерии (нитрофицирующие, водородные, железобактерии и др.).

Так, например, нитрофицирующие бактерии окисляют аммиак до азотной кислоты по уравнению:

3NH 3 +3O 2 →2HNO 2 +2H 2 O+энергия.

Высвобождающаяся в ходе реакций энергия запасается бактериями в виде молекул АТФ и используется для синтеза органических соединений.

Среди бактерий-хемотрофов много анаэробов , которые не нуждаются в контакте с атмосферой, и даже облигатных анаэробов , гибнущих в кислородной атмосфере.

Хемосинтезирующие бактерии играют важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве минеральных веществ, способствующих увеличению плодородия почв.

При переносе энергии с одного трофического уровня на другой превращения энергии идут в одном направлении (энергия убывает), поэтому можно говорить о потоке энергии . Потоки энергии подчиняются Второму закону термодинамики согласно которому в закрытых системах энергия стремится распределиться равномерно, т.е. система стремится к состоянию максимальной энтропии (разупорядочению). Однако живые тела, экосистемы и биосфера в целом способны создавать и поддерживать состояние с высокой степенью внутренней упорядоченности, т.е. состояния с низкой энтропией. «Средство, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (на низком уровне энтропии), состоит в непрерывном извлечении упорядоченности из окружающей его среды» (Э.Шредингер ). Другими словами, живой организм, для которого состояние максимальной энтропии означает смерть, извлекает «отрицательную энтропию» из окружающей среды, тем самым разрушая ее.

Более низкая энтропия, чем в окружающей среде, является важнейшим термодинамическим свойством живых систем, их отличием от неживых предметов, которые находятся в равновесии со средой.

В соответствии со вторым законом термодинамики при движении энергии по пищевой цепи на каждом этапе часть ее теряется, и на каждый новый этап цепи поступает в среднем 10% энергии с предыдущего. Эту закономерность называют «правилом 10%» Р. Линдемана . В итоге через некоторое число этапов вся энергия оказывается безвозвратно рассеянной в пространстве, что ограничивает число звеньев пищевой цепи до 4 - 6.

3.2.6. Устойчивость экосистем

Устойчивое состояние экосистем, характеризуемое динамическим равновесием между рождаемостью и смертностью, потреблением и расходом вещества и энергии, называется гомеостазом .

В учебной литературе для объяснения механизма сохранения гомеостаза в экосистеме при воздействии на неё негативных факторов, часто приводится иллюстрация к гомеостазу сообщества «волк-олень». Так, если в системе олень-волк численность оленей растет, то за счет этого и волк может увеличить свою численность, не давая оленям слишком быстро размножаться и истребить слишком большое количество растений-продуцентов. Но так как любая экосистемавходит в иерархию (соподчиненность) экосистем, то она постоянно подвергается внешним воздействиям, стремящимся вывести ее из равновесия. Если это влияние не слишком грубо, то в ходе экологического дублирования нарушенные связи заменяются другими и процесс передачи вещества и энергии продолжается. (Засуха - снижается продуктивность растений - уменьшение количества и ухудшение упитанности оленей - тогда волки переходят на питание другим видом животных. Если это невозможно, то место волка займет, например, более всеядный медведь). Те особи, для которых помехи оказались непреодолимыми, погибнут, а более стойкие приспособятся и передадут наследственную информацию потомкам. Помехи способствуют эволюции экосистемы в стороны ее совершенствования. Описанный процесс отражает действие закона внутреннего динамического равновесия, согласно которому вещество, энергия, информация и качество отдельных природных систем и их иерархии настолько связаны, что любое изменение одного из этих показателей вызывает изменение всех других показателей. В соответствии с принципом Ле Шателье - Брауна, эти изменения происходят в направлении, при котором эффект внешнего воздействия ослабляется, т.е. в направлении устойчивости. Таким образом, экосистема сопротивляется воздействиям, нарушающим ее стабильность.

Система тем надежнее, стабильнее, чем больше различных видов в ней обитает (большое биоразнообразие ) и, следовательно, чем больше имеется возможностей для экологического дублирования, тем шире пищевая цепь.

Одним из механизмов поддержания устойчивости биоценозов является экологическое дублирование . Если какой-то вид исчезает, то его место в биоценозе занимает другой со схожим типом питания. Согласно «Правилу экологического дублирования», крупные организмы исчезают раньше и их место занимают мелкие; эволюционно менее организованные сменяют более высокоорганизованных; всегда побеждают те, кто быстрее размножается и изменяется генетически.

3.2.7. Биоразнообразие и его значение

Биоразнообразие – (биологическое разнообразие) - означает разнообразие живых организмов во всех его проявлениях: от генов до биосферы. Все живое генетически различно и имеет тенденцию к увеличению биологической разнородности. Двух совершенно одинаковых особей в природе нет, кроме однояйцевых близнецов и клонов («Закон генетического разнообразия»). Но чаще всего под биоразнообразием понимают разнообразие видов (видовое разнообразие).

Вид - это совокупность особей, сходных между собой, населяющих определенный ареал, способных скрещиваться между собой, давать плодовитое потомство, похожее на родителей и отличающихся от других подобных совокупностей.

Видовое разнообразиеотражает разнообразие живых организмов (растений, животных, грибов и микроорганизмов). В настоящее время описано примерно 1,5 - 1,7 млн. видов, хотя их общее число, по некоторым оценкам, составляет до 50 млн.

Распределениевидов по поверхности суши неравномерно. Согласно правилу Уоллеса ,«по мере продвижения с севера на юг» наблюдается увеличение видового разнообразия организмов. Это касается как видов, так и составляемых ими сообществ: в тропиках значительно больше абсолютное число видов, чем на Севере, и в составе южных сообществ их также намного больше. Разнообразие видов на суше максимально в тропической зоне и уменьшается с увеличением широты. Самые богатые видовым разнообразием экосистемы - дождевые тропические леса, которые занимают около 7 % поверхности планеты и содержат более 90 % всех видов.

На Земле постоянно происходило возникновение и исчезновение видов - все виды имеют конечное время существования. Вымирание компенсировалось появлением новых видов («Правило константности числа видов в биосфере»).

В последние десятилетия происходит сокращение биологического разнообразия за счет вымирания и уничтожения видов. Основной причиной сокращения видов являются: антропогенные воздействия (т.е. деятельность человека: вырубка лесов, увеличение сельскохозяйственных угодий, прокладка новых дорог, строительство и т.д.). При этом быстрее вымирают более специализированные формы, так как их генетические резервы для дальнейшей адаптации снижены (Правило О.Марша )

Сильнейшую угрозу для большинства диких видов в настоящее время представляет уничтожение, сужение и разделение ареалов их обитанияв результате деятельности человека.

Главной причиной снижения численности крупных млекопитающих (слонов, носорогов) в странах Азии и Африки является их чрезмерная добыча. А торговля экзотическими животными и растениями: ведет к их массовой гибели при транспортировке.

По официальным данным, в настоящее время на Земле 50 биологических видов исчезают ежечасно .

Главная причина необходимости сохранения биоразнообразия состоит в том, что оно выполняет ведущую роль в обеспечении устойчивости экосистем и биосферы в целом (поглощение загрязнений, стабилизация климата, обеспечение пригодных для жизни условий). Биоразнообразие выполняет регулирующую функцию в осуществлении всех биогеохимических, климатических и других процессов на Земле. Каждый вид, каким бы незначительным он не казался, вносит свой вклад в обеспечение устойчивости не только "родной" локальной экосистемы, но и биосферы в целом. Каждый вид вносит свой вклад в разнообразие - с этой точки зрения не существует бесполезных и вредных видов.

При увеличении биоразнообразия устойчивость сообщества к изменяющимся условиям среды повышается.

Сокращение видового разнообразия животных и растений ведет к упрощению и снижению устойчивости экосистем. Примером таких систем являются агробиоценозы.

Кроме того, биоразнообразие обеспечивает потребность в биологических ресурсах для удовлетворения нужд человечества (пища, материалы, лекарства и др.), да и с этической точки зрения - жизнь самоценна.

3.2.8. Динамика экосистем

Стремясь к поддержанию гомеостаза, экосистемы тем не менее способны к изменениям, развитию, переходу от более простых к более сложным формам.

Изменения в сообществах могут быть циклическими и поступательными.

Циклические изменения- периодические изменения в биоценозе (суточные, сезонные, многолетние), при которых биоценозвозвращается к исходному состоянию.

Суточные циклы связанны с изменением освещенности, температуры, влажности и других экологических факторов в течение суток и наиболее резко выражены в условиях континентального климата. Суточные ритмы проявляются в изменении состояния и активности живых организмов.

Сезонная цикличность связанна с изменением экологических факторов в течение года и наиболее сильно выражена в высоких широтах, где велик контраст зимы и лета. Листопад относится, например, к явлениям, характеризующимся сезонным ритмом. Сезонная изменчивость проявляется не только в изменении состояния и активности, но и количественного соотношения отдельных видов. На определенный период многие виды выключаются из жизни сообщества, впадая в спячку, оцепенение, перекочевывая или улетая в другие районы.

Многолетняя изменчивость связана с флуктуациями климата или другими внешними факторами (степень разлива рек), либо с внутренними причинами (особенности жизненного цикла растений-эдификаторов, повторение массового размножения животных).

Поступательные изменения - изменения в биоценозе, в конечном счет приводящие к смене этого сообщества другим.

3.2.9. Сукцессия

Сукцессия- последовательная смена биоценозов (экосистем), выраженная в изменении видового состава и структуры сообщества.

Последовательный ряд сменяющих друг друга в сукцессии сообществ называется сукцессионной серией (или сукцессионным рядом) (рис. 21).

К сукцессиям относятся опустынивание степей, зарастание озер и образование болот, и другие.

В зависимости от причин, вызвавших смену биоценоза, сукцессии делят на природные и антропогенные .

Природные сукцессии происходят под действием естественных причин, не связанных с деятельностью человека, например, зарастание озера с непроточной или слабопроточной водой.

Антропогенные сукцессии обусловлены деятельностью человека, например, изменение лесных экосистем после вырубки леса.

Аутогенные сукцессии (самопорождающиеся) возникают вследствие внутренних причин (изменения среды под действием сообщества).

Аллогенные сукцессии (порожденные извне) – вызваны внешними причинами (например, изменения климата).

Рис. 21. Пример типичной наземной сукцессии

В зависимости от первоначально состояния субстрата, на котором развивается сукцессия, различают первичные и вторичные сукцессии.

Первичные сукцессии развиваются на субстрате, не занятом живыми организмами (на скалах, обрывах, сыпучих песках, в новых водоемах и т.п.). Первые поселяющиеся здесь организмы называются пионерами, их главной задачей является образование почвы. Пионерами являются обычно бактерии, накипные и другие виды лишайников и другие. У них нет корней, в почве они не нуждаются. Под действием ветра, солнца, воды и выделяемых пионерами органических кислот скала разрушается и образуется минеральная пыль, а затем почва, в которой поселяются членистоногие, грибы. Затем появляется субстрат, на котором могут расти растения с корнями. Это – начальный биоценозсукцессии – стадия первопоселенцев.

Вторичные сукцессии происходят на месте уже существующих биоценозов после их нарушения (в результате вырубки, пожара, вспашки, распашки степей, извержения вулкана, наводнения, осушения болот).

Сукцессия в процессе своего развития проходит ряд фаз и завершается образованием сообщества, именуемого «климакс-формацией», или просто климаксом.

Когда экосистемаприближается к состоянию климакса, в ней, в соответствии с «законом сукцессионного замедления», происходит замедление всех процессов развития, снижается разнообразие видов.

Согласно принципу «нулевого» максимума климаксные экосистемы, как правило, обладают максимальной биомассой и минимальной, практически нулевой продуктивностью, то есть термодинамически она наиболее рациональны. С приближением к климаксной фазе экологическая система становится более закрытой. Чем глубже нарушенность среды какого-нибудь пространства, тем на более ранних фазах оканчивается сукцессия.

4. БИОСФЕРНАЯ ЭКОЛОГИЯ

Этот раздел экологии выделен в связи с особой ролью биосферы в формировании жизни на Земле.

Термин «биосфера» был предложен австрийским геологом Э.Зюссом в 1875 году, трактовавшим его как область взаимодействия основных оболочек Земли, где встречаются живые организмы. Тем не менее, создателем науки «биосфера» следует считать выдающегося русского ученого В.И.Вернадского, который для обозначения совокупности всех живых организмов на Земле ввел понятие живого вещества и отвел ему роль главнейшей преобразовательной силы на планете Земля .

Границы биосферы . В большинстве случаев в качестве верхней теоретической границы биосферы указывают озоновый слой (толщиной несколько миллиметров) без уточнения его границ. Этот слой расположен на высотах 16-20 км.

Вся толща Мирового океана по современным представлениям полностью занята жизнью.

Нижняя граница биосферы проходит на глубине 3-4 км, максимум 6-7 км на суше и на 1-2 км ниже дна Мирового океана.

Состав биосферы : биотические (живые) и абиотические (неживые) компоненты.

Биотический компонент– это вся совокупность живых организмов (по В.И.Вернадскому – «живое вещество»).

Абиотический компонент- сочетание энергии, воды, определенных химических элементов и других неорганических условий, в которых существуют живые организмы.

Важнейшие свойства биосферы:

- целостность и дискретность – достигается круговоротом вещества и энергии;

- Централизованность - центральным звеном биосферы выступают живые организмы (живое вещество).

- устойчивость и саморегуляция – обеспечиваются гомеостатическими механизмами, которые подчиняются принципу Ле Шателье – Брауна: при действии на систему сил, выводящих ее из состояния устойчивого равновесия, последнее смещается в том направлении, при котором эффект этого воздействия ослабляется;

- ритмичность – повторяемость во времени тех или иных явлений. Ритмические явления не повторяются полностью в конце ритма того состояния природы, которое было в его начале. Именно этим и объясняется направленное развитие природных процессов;

- круговорот веществи энергозависимость . Жизнь в биосфере зависит от потока энергии и круговорота веществ между биотическими и абиотическими компонентами.

Основные процессы, благодаря которым потоки энергии проходят через организмы, это - фотосинтез, хемосинтез (см. раздел 3.2.5),дыхание и брожение . Первые два процесса обеспечивают синтез органических веществ за счет энергии света (фотосинтез) и окисления неорганических веществ (хемосинтез). В ходе дыхания и брожения органические вещества расщепляются, а заключенная в них энергия используется живыми организмами, но в конечном итоге переходит в тепло. Брожение, в отличие от дыхания не требует кислорода.

Учение о биосфере

Основополагающие принципы учения о биосфере, разработанные В. И. Вернадским, были опубликованы в работе «Биосфера» (1926), где рассматриваются компоненты биосферы, ее границы, функции живого вещества, эволюция биосферы Суть учения: биосфера – это качественно своеобразная оболочка Земли, развитие которой в значительной мере определяется деятельностью живых организмов.

В.И. Вернадский выделяет в биосфере глубоко отличные и в то же время генетически связанные части:

- живое вещество – живые организмы;

- биогенное вещество – продукты жизнедеятельности живых организмов (каменный уголь, нефтьи т.п.);

- косное вещество – горные породы (минералы, глины и т.д.);

- биокосное вещество - продукты распада и переработки горных и осадочных пород живыми организмами (почвы, ил, природные воды);

- радиоактивные вещества , получающиеся в результате распада радиоактивных элементов (радий, уран, торий и т. д.);

- рассеянные атомы (химические элементы), находящиеся в земной коре в рассеянном состоянии;

- вещество космического происхождения – метеориты, протоны, нейтроны, электроны.

Живое вещество - это совокупность живых организмов. На нашей планете оно существует в виде огромного множества организмов разнообразных форм и размеров. В настоящее время на Земле существует более 2 млн. видов организмов, из них около 0,5 млн. – растения, 1,5 млн. – животные и микроорганизмы (из них около 0,5 млн. насекомых). В соответствии с законом константности Вернадского «Количество (биомасса) живого вещества биосферы (для данного геологического периода) есть константа. Любое изменение количества живого вещества в одном из регионов биосферы неминуемо влечет за собой такую же по размеру его перемену в каком-либо регионе, но с обратным знаком. Полярные изменения могут быть использованы в процессах управления природой, но следует учитывать, что не всегда происходит адекватная замена. Обычно высокоразвитые виды и экосистемы вытесняются другими, стоящими на относительно эволюционно более низком уровне (крупные организмы – более мелкими), а полезные для человека формы – менее полезными, нейтральным или даже вредными.

Живое вещество распределено в биосфере неравномерно. Наибольшая концентрация жизни наблюдается на границах соприкосновения земных оболочек: атмосферы и литосферы, атмосферы и гидросферы, гидросферы и литосферы, а особенно на границах трех оболочек: атмосферы, литосферы, гидросферы. Эти места наибольшей концентрации жизни В. И. Вернадский назвал «пленками жизни» . Размножением, питанием и дыханием живые организмы создают определенное давление на среду, меняют течение всех химических реакций, участвуют в круговороте всех химических элементов. Они выполняют в биосфере строго определенные функции для поддержания жизни на Земле, заполняют без пропусков всю планету. Живое вещество способно «растекаться» на поверхности планеты, оно с огромной скорость захватывает все незанятые участки, что обуславливает «давление жизни» на неживую природу. Характеризуется большим видовым разнообразием по сравнению с косным веществом.

Однако косное вещество резко преобладает по массе и объему, в то время как количество живого вещества составляет примерно 0,25% биосферы по массе. Итальянский естествоиспытатель Ф.Реди еще в XVI в утверждал, что живое вещество происходит только от живого, и между живым и неживым веществом существует непроходимая граница, хотя и имеется постоянное взаимодействие. В.И.Вернадский (1924) своим учением о биосфере утверждал, что между живым и косным веществом существует непрерывно идущая связь во время дыхания, питания, размножения живого вещества, миграции атомов из косных тел биосферы в живые и обратно. Эта зависимость выражена в «законе биогенной миграции атомов» В.И.Вернадского: миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция) или протекает в среде, геохимические особенности которой (О 2 , СO 2 , Н 2 и т.д.) обусловлены живым веществом – как тем, которое в настоящее время населяет биосферу, так и тем, которое было на Земле в течение всей геологической истории.
Согласно этому Закону, имеющему важное теоретическое и практическое значение, понимание общих химических процессов, протекавших и протекающих на поверхности суши, в атмосфере и в заселенных организмами глубинах литосферы и вод, а также геологических слоях, сложенных прошлой деятельностью организмов, невозможно без учета биотических и биогенных факторов, в том числе эволюционных. Поскольку люди воздействуют прежде всего на биосферу и ее живое население, они тем самым изменяют условия биогенной миграции атомов, создавая предпосылки для еще более глубоких химических перемен в исторической перспективе. Таким образом, процесс может стать саморазвивающимся, не зависящим от желания человека и практически, при глобальном размахе, неуправляемым. Отсюда одна из самых насущных потребностей – сохранение живого покрова Земли в относительно неизменном состоянии. Тот же Закон определяет и необходимость учета воздействий на биоту при любых проектах преобразования природы. В этих случаях происходят региональные и локальные изменения в химических процессах, ведущие при любых крупных ошибках к деградации среды – опустыниванию.

Выделяют следующие основные геохимические функции живого вещества , благодаря которым обеспечивается круговорот веществи превращение энергии, а, в итоге, целостность и устойчивое состояние биосферы:

- Энергетическая функция – связывание и запасание солнечной энергии в органическом веществе и последующее рассеяние энергии при потреблении и минерализации органического вещества. (При передаче энергии по пищевым цепям часть ее постепенно рассеивается, но часть вместе с остатками организмов переходит в ископаемое состояние, образуя запасы нефти, угля и др.) Эта функция связана с питанием, дыханием, размножением и другими процессами жизнедеятельности организмов.

- Газовая функция - способность живых организмов изменять и поддерживать определенный газовый состав среды обитания и всей атмосферы в целом. Ведущая роль принадлежит зеленым растениям, в тоже время большинство живых организмов в процессе дыхания используют кислород, выделяя в атмосферу углекислый газ.

- Окислительно-восстановительная функция – окисление и восстановление различных веществ с участием живых организмов, которые при этом получают энергию для жизненных процессов. Под влиянием живых организмов происходит интенсивная миграция атомов элементов с переменной валентностью (Mn, Fe, S, P, N и др.), создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование сероводорода и т.п.

- Концентрационная функция – «захват» из окружающей среды живыми организмами и накопление в них атомов биогенных химических элементов. Эта способность живого вещества повышает содержание атомов химических элементов в организмах по сравнению с окружающей средой на несколько порядков. Например, осока и хвощ содержат много кремния, морская капуста и щавель – йода, а коралловые рифы - кальция.

- Деструктивная функция – разрушение организмами и продуктами их жизнедеятельности, в том числе и после их смерти, как остатков органического вещества, так и косных веществ. Существенную роль здесь играют редуценты (деструкторы).

- Транспортная функция – перенос вещества и энергии в результате активной формы движения организмов. Такой перенос может осуществляться на огромные расстояния, например, при миграциях животных.

- Средообразующая функция – преобразование физико-химических параметров среды. Эта функция является интегральной, она представляет собой результат совместного действия других функций.

- Рассеивающая функция – противоположная концентрационной – рассеивание веществ в окружающей среде (выделение организмами экскрементов, смена покрова и т.п.)

- Информационная функция – накопление живыми организмами определенной информации, закрепление ее в наследственных структурах и передача последующим поколениям. Это одно из проявлений адаптационных механизмов.

В процессе развития биосферы выделяют три этапа :

- начальный этап формирования и существования биосферы, где воздействие человека на природу незначительно;

- биотехносфера, когда деятельность человеческого общества становится существенным фактором в биосфере, возникает проблема предотвращения необратимых негативных последствий в природе. Пути ее решения лежат в управлении процессами между человеком и природой так, чтобы они были взаимовыгодны;

- ноосфера – сфера разума. Это высшая стадия развития биосферы, когда разумная деятельность человека становится главным, определяющим фактором развития. В ноосфере человек становится крупной геологической силой, он перестраивает своим трудом и мыслью область своей жизни

Условиями, при которых В.И. Вернадский полагал возможным формирование и развитие процесса нооферогенеза , являются:

Заселение человеком всей планеты;

Резкое преобразование средств связи и обмена между странами;

Усиление связей, в том числе политических, между всеми странами Земли;

Начало преобладания геологической роли человека над другими геологическими процессами, протекающими в биосфере;

Расширение границ биосферы и выход в космос;

Открытие новых источников энергии;

Равенство людей всех рас и религий;

Увеличение роли народных масс в решении вопросов внешней и внутренней политики;

Свобода научной мысли и научного искания от давления религиозных, философских и политических построений и создание в государственном строе условий, благоприятных для свободной научной мысли;

Разумное преобразование первичной природы Земли с целью сделать ее способной удовлетворить все материальные, эстетические и духовные потребности численно возрастающего населения;

Исключение войн из жизни общества.

К сожалению, за время своего существования, человек сильно изменил биосферу, антропогенное изменение биосферы зашло слишком далеко. Биосфера превращается в техносферу, причем направленность техногенного воздействия прямо противоположно направленности эволюции биосферы. Необходимо помнить, что биосферу нельзя заменить искусственной средой («Закон незаменимости биосферы»).

Круговорот веществ

Для того, чтобы биосфера продолжала существовать и жизнь на Земле не прекращалась, должны постоянно осуществляться химические превращения её живого вещества. Иначе говоря, в биосфере должны постоянно происходить круговороты веществ .

В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический (биотический), биогеохимический и антропогенный круговороты.

Геологический круговорот (большой круговорот в природе) – круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы. Эндогенные (процессы внутренней динамики) происходят под влиянием внутренней энергии Земли. Экзогенные (процессы внешней динамики) происходят под влиянием внешней энергии Солнца.

Биологический (биотический) круговорот(малый круговорот веществв биосфере) – круговорот веществ, движущей силой которого является деятельность живых организмов. Главным источником энергии является солнечная радиация, которая порождает фотосинтез.

Биогеохимический круговорот (биогеохимические циклы)– часть биологического круговорота, составленная обменными циклами биогенных элементов.

В экосистемах очень важна роль биогеохимических циклов Биогенные элементы - С, О 2 , N 2 , Р, S, СО 2 , Н 2 О и другие - в отличие от энергии удерживаются в экосистемах и совершают непрерывный круговорот из внешней среды в организмы и обратно во внешнюю среду. Эти замкнутые пути называют биогеохимическими циклами. В каждом круговороте различают два фонда: резервный , включающий большую массу движущихся веществ, в основном небиологических компонентов, и подвижный, или обменный, фонд - по характеру более активный, но менее продолжительный, отличительной особенностью которого является быстрый обмен между организмами и их непосредственным окружением.

Биогеохимические циклы можно подразделять на два типа:

1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан).

2) осадочный цикл с резервным фондом в земной коре.

4.2.1. Круговорот азота

Азот составляет около 80% атмосферного воздуха и является крупнейшим резервуаром и предохранительным клапаном атмосферы. Однако большинство организмов не могут усваивать азот из воздуха. Между тем азот участвует в построении всех белков и нуклеиновых кислот. Усваивать азот из воздуха способны только некоторые организмы - бактерии, которые существуют в симбиозе с бобовыми растениями (горох, фасоль, соя). Они поселяются на корнях бобовых растений, образуя клубеньки, в которых и происходит химическая фиксация азота. Азот могут усваивать также сине-зеленые водоросли, называемые цианобактериями. Они образуют симбиоз с плавающим папоротником, который растет на заливаемых водой рисовых полях и до высадки рассады риса удобряет эти поля азотом. Первый этап фиксации атмосферного азота приводит к образованию аммиака и называется аммонификацией Аммиак используется растениями для синтеза аминокислот, из которых состоят белки. Второй этап фиксации азота микроорганизмами - нитрификация, при этом образовавшийся аммиак преобразуется в соли азотной кислоты - нитраты. Нитраты усваиваются корнями растений и транспортируются в листья, где происходит синтез белков . Процесс разложения белков, осуществляемый особой группой бактерий, называется денитрификацией. Распад идет сначала с образованием нитратов, потом аммиака и, наконец, молекулярного азота. Содержание азота в живых тканях составляет около 3% его содержания в обменных фондах экосистем. Общее время круговорота азота - примерно 100 лет.

Вмешательство человека в круговорот азота состоит в следующем:

Сжигание древесины или ископаемого топлива (тепловые электростанции, автомобильный транспорт, промышленность), в результате чего образуется оксид азота (NO). Оксид азота затем соединяется в атмосфере с кислородом и образует диоксид азота (NO 2), который при взаимодействии с водяным паром может образовывать азотную кислоту (HNO 3);

Производство азотных удобрений и их широкое применение;

Увеличение количества нитрат-ионов и ионов аммония в водных экосистемах при попадании в них загрязненных стоков с животноводческих ферм, смытых с полей азотных удобрений, а также очищенных и неочищенных коммунально-бытовых канализационных стоков.


Рис. 22. Упрощенная схема круговорота азота

Рис. 23. Графическое изображение круговорота азота

Существенные изменения в круговороте происходят и от разрушения органического вещества почв. Отрицательные последствия нарушения круговорота азота : загрязнение оксидами азота, аммиаком и другими соединениями атмосферного воздуха и воды, накопление нитритов и нитратов в пищевых продуктах. Оксиды азота принимают участие в образовании фотохимического смога. На рис. 22-23 показаны схемы круговорота азота.

4.2.2. Круговорот углерода

В круговороте СО 2 атмосферный фонд невелик по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры.

Атмосфераинтенсивно обменивается СО 2 с Мировым океаном, где его в 60 раз больше, чем в атмосфере, так как СО 2 хорошо растворяется в воде (чем ниже температура, тем лучше растворимость). Океан действует как гигантский насос: поглощает СО 2 в холодных областях и частично выдувает в тропиках. Избыточное количество СО 2 в океане соединяется с водой, образуя угольную кислоту, соединяясь с Са, К, Nа она образует стабильные соединения в виде карбонатов, которые оседают на дно. Фитопланктон в океане в процессе фотосинтеза поглощает СО 2 . Умирая, организмы попадают на дно и становятся частью осадочных пород. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.

На рис. 24 и 25 представлены упрощенные схемы круговорота углерода.

Животные
Растения
горение
фотосинтез

Рис. 24. Упрощенная схема круговорота углерода

Рис. 25. Схема части углеродного цикла, показывающая круговорот вещества и однонаправленный поток энергии в процессах фотосинтеза и аэробного дыхания

На суше в процессе фотосинтеза СО 2 включается в состав органического вещества растений. Затем из растений основная масса углерода поступает в пищевые (трофические) цепи животных и накапливается в их телах в виде различного вида углеводов. Большая часть животных в процессе дыхания потребляет из атмосферы кислород и возвращает в нее углекислый газ. Это наиболее короткий круговорот, продолжительность которого составляет минуты. Отмершее органическое вещество растений и животных разлагается особой группой организмов (в основном микробами и грибами) до исходных минеральных веществ и углекислого газа, которые тоже возвращаются в атмосферу. Это более длительный круговорот, продолжительность которого равна времени жизни и времени разложения отмерших растений и животны х. Это время составляет от нескольких часов до нескольких сотен лет. Некоторая часть углерода включается в большой или геологический круговорот. В зависимости от условий отмершая органика, содержащая углерод, может превратиться в уголь, торф, нефть, газ и другие горючие соединения, которые в настоящее время используются человечеством с целью получения энергии. Это так называемый «уход углерода в геологию». Такой цикл может длиться десятки, сотни тысяч и даже миллионы лет, с последующим освобождением углерода (что знаменует завершение круговорота) при сгорании горючих соединений, вулканической деятельности или деятельности некоторых организмов.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания СО 2 в атмосфере и развитию парникового эффекта (см. раздел 5.3.5).

Скорость круговорота СО 2 , то есть время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

4.2.3. Круговорот воды

Водасоставляет значительную часть живых существ: в теле человека - по весу 60%, а в растительном организме достигает 95%. На круговорот воды на поверхности Земли затрачивается около трети всей поступающей на Землю солнечной энергии. Испарение с водных пространств создает атмосферную влагу. Влага конденсируется в форме облаков, охлаждение облаков вызывает осадки в виде дождя и снега; осадки поглощаются почвой или стекают в моря и океаны. Круговорот воды между сушей и океаном относится к большому геологическому круговороту. Для человечества важны фазы круговорота в пределах экосистем. Здесь происходят четыре процесса (рис.26):

- перехват. Растительность перехватывает часть выпадающей в осадках воды до того, как она достигает почвы. Перехваченная вода испаряется в атмосферу. Величина перехвата в умеренных широтах может достигать 25% общей суммы осадков, это - физическое испарение;

- транспирация- биологическое испарение воды растениями. Это не дождевая вода, а вода, заключенная в растении, т. е. экосистемная. Растения, потребляя около 40% общего количества осадков, играют главную роль в круговороте воды;

- инфильтрация - просачивание воды в почве. При этом часть инфильтрованной воды задерживается в почве тем сильнее, чем значительнее в ней коллоидный комплекс, соответствующий накоплению в почве перегноя;

- сток . В этой фазе круговорота избыток выпавшей с осадками воды стекает в моря и океаны.

Отличие циклов углерода и азота от круговорота воды состоит в том, что в экосистемах два названных элемента накапливаются и связываются, а вода проходит через экосистемы почти без потерь. Биосфера ежегодно использует на формирование биомассы 1% воды , выпавшей в виде осадков.

Рис. 26. Круговорот воды в природе: океанская вода, составляющая 93% гидросферы, совершает полный оборот за 2600 лет; вода рек и озер (5,4% гидросферы) - за 3,3 года; почвенная влага - за 10-12 месяцев

4.2.4. Круговорот фосфора

Фосфор- один из наиболее важных биогенных компонентов. Он входит в состав нуклеиновых кислот, клеточных мембран, систем аккумуляции и переноса энергии, костной ткани и дентина. Круговорот фосфора всецело связан с деятельностью живых организмов.

В отличие от азота и углерода резервуаром фосфора служат не атмосфера, а горные породы и отложения, образовавшиеся в прошлые геологические эпохи. Круговорот фосфора - типичный пример осадочного цикла.

В наземных экосистемах растения извлекают фосфор из почвы (в основном в форме РО 3 и включают его в состав органических соединений (белков, нуклеиновых кислот, фосфолипидов и др.) или оставляют в неорганической форме. Далее фосфор передается по цепям питания. После отмирания живых организмов и с их выделениями фосфор возвращается в почву.

В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до морских птиц. Их экскременты (гуано) либо сразу попадают назад в море, либо сначала накапливаются на берегу, а затем все равно смываются в море. Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин, и заключенный в них фосфор снова попадает в осадочные породы, то есть выключается из биогеохимического круговорота.

При неправильном применении фосфорных удобрений, водной и ветровой эрозии почв большие количества фосфора удаляются из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфор­содержащих руд (фосфоритов, апатитов и др.). При избыточном внесении фосфорных удобрений почва перенасыщается стронцием, фтором, редкоземельными элементами. С другой стороны, поступление из почвы в водоемы больших количеств таких биогенных элементов, как фосфор, азот, сера и др., вызывает бурное развитие сине-зеленых водорослей и других водных растений («цветение» воды) и эвтрофикацию водоемов (см. раздел 5.4.1). Но большая часть фосфора уносится в море.

На рис. 27 схематически представлен круговорота фосфора в биосфере.

Рис. 27. Круговорот фосфора в биосфере

4.2.5. Круговорот серы

Сера – необходимый компонент всех белков. В земной коре очень много серы, однако в отличие от фосфораимеетсярезервный фонд и в атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежитмикроорганизмам. Одни из них восстановители, другие - окислители. На рис. 28-а и 28-б показан круговорот серы в биосфере.

Рис. 28-а. Круговорот серы

Рис. 28-б. Круговорот серы

В горных породах сера встречается в виде сульфидов, в растворах - в форме иона, в газообразной фазе в виде сероводорода или сернистого газа. В некоторых организмах сера накапливается в чистом вид и при их отмирании на дне морей образуются залежи самородной серы.

В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. Потребности животных в соединениях серы могут удовлетворяться только за счет растений. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до сероводорода, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.

Естественными путями или источниками поступления серы в окружающую среду являются: вулканы, природные пожары, распад серосодержащих минералов и разложение органических веществ

Сжигание человеком ископаемого топлива (особенно угля), а также выбросы химической промышленности, приводят к накоплению в атмосфере сернистого газа, которыйотносится к числу наиболее агрессивных загрязнителей (см. раздел 5.3.4).Он действует на природные объекты как в результате сухого осаждения, так и через кислотные осадки (реагируя с парами воды).

4.2.6. Круговорот кислорода

Основная масса кислорода находится в связанном состоянии: количество молекулярного кислорода составляет всего лишь около 0,01% от общего содержания кислорода в земной коре.

Рис. 29. Схема круговорота кислорода в биосфере

Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными , растениями и микроорганизмами и при минерализации органических остатков . Основная доля кислорода продуцируется растениями суши - почти 3/4, остальная часть - фотосинтезирующими организмами Мировой океана.

Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре при извержении вулканов и др. Кислород совершает еще и важнейший круговорот, входя в состав воды. Скорость круговорота - около 2 тыс. лет.

На рис. 29 представлена схема круговорота кислорода в биосфере.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Для изучения основных законов функционирования биосферы, принципов взаимодействия её составляющих, передачи энергии, информации и биомассы, удобно рассматривать биосферу на экосистемном уровне, т.е. - определяя экосистему, как элементарную единицу биосферы. Экологические системы разных уровней представляют собой основные функциональные единицы биосферы. Эти надорганизменные объединения включаю организмы и неживое (косное) окружение, находящиеся во взаимодействии, без которого невозможно поддержание жизни на нашей планете.

Человечеству, как элементу биосферы, наиболее интенсивно увеличивающему своё воздействие на неё, необходимо глубоко изучить законы организации и функционирования экосистем и биосферы в целом, дабы избежать губительного воздействия и уберечь от гибели и планету и самих себя.

1. Понятие экосистемы

Понятие экосистемы было предложено английским учёным А. Тенсли в 1935 году. Он определил экосистему как одну из физических систем, в которую входит комплекс организмов, или биом, и весь комплекс физических факторов, составляющих среду биома, причём организмы и факторы неорганической среды являются равноправными и неразрывно связанными участниками экосистемы. Тенсли не был единственным учёным задумавшемся о необходимости рассматривать живую и абиотическую среды как единое целое. В 1944 году русский учёный В.Н. Сукачёв предложил понятие «биогеоценоз». Биогеоценоз - совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий). Имеющая свою особую специфику взаимодействия слагающих её компонентов и определённый тип обмена веществом и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии. Понятия крайне сходны по своему значению, однако основным отличием экосистемы биогеоценоза является то, что экосистема не имеет определённого объёма. Тем не менее, в экологической литературе зачастую приравнивают данные понятия. Если не брать в расчёт, определённость объёмов биогеоценоза, идея о том, что экосистема есть совокупность биоценоза и геоценоза, т.е. и живого и неживого достаточно показательна.

2. Структура экосистемы

Несмотря на то, что экосистему принимают за элементарную единицу биосферы, по своей структуре экосистема представляет собой крайне сложный и многокомпонентный механизм. Популяции разных видов всегда образуют в биосфере Земли сложные сообщества - биоценозы. Биоценоз - совокупность растений, животных, грибов и простейших, населяющих участок суши или водоёма и находящихся в определённых отношениях между собой. Биоценозы вместе с занимаемыми ими конкретными участками земной поверхности и прилежащей атмосферой и называют экосистемами. Они могут быть разного масштаба - от капли воды или муравьиной кучи до экосистемы острова, реки, континента и всей биосферы в целом. Таким образом, экосистема - взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергии. Ведущая активная роль в процессах взаимодействия компонентов экосистемы принадлежит живым существам, т.е. биоценозу. Компоненты биоценоза тесно связаны и взаимодействуют с литосферой, атмосферой, гидросферой. В результате на поверхности Земли образуется ещё один элемент экосистем - почва (педосфера).

Понятие экологической системы иеpаpхично. Это означает, что всякая экологическая система определенного уровня включает в себя ряд экосистем предыдущего уровня, меньших по площади и сама она, в свою очередь, является составной частью более крупной экосистемы. В качестве элементарной экосистемы можно представить себе кочку или мочажину на болоте, а более общей экосистемой, охватывающей множество аласов и межаласные пpостpанства, явиться соответствующая залесенная поверхность теppасы или пенеплена. Продолжая этот ряд вверх можно подойти к экологической системе Земли - биосфере, а двигаясь вниз - к биогеоценозу, как элементарной биохорологической (хора - пространство, гр.) единице биосферы. Учитывая решающее значение на развитие живого вещества Земли зональных факторов, пpавомеpно представить себе такой теppитоpиальный ряд соподчиненных экосистем:

элементарные > локальные > зональные > глобальные.

Все группы экосистем - продукт совместного исторического развития видов, различающихся по систематическому положению; виды при этом приспосабливаются друг к другу. Первичной основой для сложения экосистем служат растения и бактерии - продуценты органического вещества (атмосферы). В ходе эволюции до заселения растениями и микроорганизмами определённого пространства биосферы не могло быть и речи о заселении его животными.

Популяции разных видов в экосистемах воздействуют друг на друга по принципу прямой и обратной связи. В целом существование экосистемы регулируется в основном силами, действующими внутри системы. Автономность и саморегуляция экосистемы определяет его особое положение в биосфере как элементарной единицы на экосистемном уровне.

Экосистемы, образующие в совокупности биосферу нашей планеты, взаимосвязаны круговоротом веществ и потоком энергии. В этом круговороте жизнь на Земле выступает как ведущий компонент биосферы. Обмен веществ между соединёнными экосистемами может осуществляться в газообразной, жидкой и твёрдой фазах, а также в форме живого вещества (миграция животных).

Чтобы экосистемы функционировали долго и как единое целое, они должны обладать свойствами связывания и высвобождения энергии, круговоротом веществ. Экосистема также должна иметь механизмы, позволяющие противостоять внешним воздействиям.

Существуют различные модели организации экосистем.

1. Блоковая модель экосистемы. Каждая экосистема состоит из 2 блоков: биоценоз и биотоп. Биогеоценоз, по В.Н. Сукачеву, включает блоки и звенья. Это понятие, как правило, применяют к сухопутным системам. В биогеоценозах обязательно наличие как основного звена - растительного сообщества (луг, степь, болото). Существуют экосистемы без растительного звена. Например, те, которые формируются на базе разлагающихся органических остатков, трупов животных. В них достаточно лишь присутствие зооценоза и микробиоценоза.

2. Видовая структура экосистем. Под ней понимают количество видов, которые образуют экосистему, и соотношение их численностей. Видовое разнообразие исчисляется сотнями и десятками сотен. Оно тем значительнее, чем богаче биотоп экосистемы. Самыми богатыми по видовому разнообразию являются экосистемы тропических лесов. Богатство видов зависит и от возраста экосистем. В сформировавшихся экосистемах обычно выделяется один или 2 - 3 вида явно преобладающих по численности особей. Виды, которые явно преобладают по численности особей, - доминантные (от лат. dom-inans - «господствующий»). Также в экосистемах выделяются виды - эдификаторы (от лат. aedifica-tor - «строитель»). Это те виды, которые являются образователями среды (ель в еловом лесу наряду с доминантностью имеет высокие эдификаторные свойства). Видовое разнообразие - важное свойство экосистем. Разнообразие обеспечивает дублирование ее устойчивости. Видовую структуру используют для оценки условий местопроизрастания по растениям-индикаторам (лесная зона - кислица, она указывает на условия увлажнения). По растениям-эдификаторам или доминантам и растениям-индикаторам называют экосистемы.

3. Трофическая структура экосистем. Цепи питания. Каждая экосистема включает в себя несколько трофических (пищевых) уровней. Первый - растения. Второй - животные. Последний - микроорганизмы и грибы.

С точки зрения трофической структуры экосистему можно разделить на два яруса:

1) Верхний автотрофный ярус, или «зелёный пояс», включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии света, использование простых неорганических соединений и накопление сложных органических соединений.

2) Нижний гетеротрофный ярус, или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т.д., в котором преобладают использование, трансформация и разложение сложных соединений.

При этом важно понимать, что живые организмы в «зелёном» и «коричневом» поясах будут различаться. В верхнем ярусе будут преобладать насекомые и птицы, питающиеся листвой и, например, почками. В нижнем же ярусе, будут преобладать микроорганизмы и бактерии разлагающие органику и неорганику. Также в этом поясе будет значительное количество крупных животных.

С другой стороны, если говорить о переносе питательного вещества и энергии, в составе экосистемы удобно выделять следующие компоненты:

1) Неорганические вещества (C, N, CO2, H2O и др.), включающиеся в круговороты.

2) Органические соединения (белки, углеводы, липиды, гумусовые вещества и т.д.) связывающие биотическую и абиотическую части.

3) Воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы.

4) Продуцентов, автотрофных организмов, в основном зелёные растения, которые могут производить пищу из простых неорганических веществ

5) Макроконсументов, или фаготрофов - гетеротрофных организмов, в основном животных, питающихся другими организмами или частицами органического вещества.

6) Микроконсументов, сапротрофов, деструкторов, или осмотрофов - гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путём разложения мёртвых тканей, либо путём поглощения растворённого органического вещества, выделяющегося самопроизвольно или извлечённого сапротрофами из растений и других организмов. В результате деятельности сапротрофов высвобождаются неорганические элементы питания, пригодные для продуцентов; кроме того, сапротрофы поставляют пищу макроконсументам и часто выделяют гормоноподобные вещества, ингибирующие или стимулирующие функционирование других биотических компонентов экосистемы.

Одна из общих черт всех экосистем, будь то наземные, пресноводные, морские или искусственные экосистемы (например, сельскохозяйственные), - это взаимодействие автотрофных и гетеротрофных компонентов. Организмы, участвующие в различных процессах круговорота, частично разделены в пространстве; автотрофные процессы наиболее активно протекают в верхнем ярусе («зелёном поясе»), где доступен солнечный свет. Гетеротрофные процессы наиболее интенсивно протекают в нижнем ярусе («коричневом поясе»), где в почвах и осадках накапливается органическое вещество. Кроме того, эти основные функции компонентов экосистемы частично разделены и по времени, поскольку возможен значительный временной разрыв между продуцированием органического вещества автотрофными организмами и его потреблением гетеротрофами. Например, основной процесс в пологе лесной экосистемы - фотосинтез.

экосистема гетеротрофный беогеоценоз

Заключение

Таким образом, при детальном изучении принципов организации экосистем, становится понятно, что не стоит пренебрегать ролью даже крошечных её составляющих. Даже незначительное изменение состава живой и неживой природы в одной экосистеме может повлечь за собой необратимые изменения, причём не только в данной, но и в соседствующих экосистемах, так как данная система является открытой.

Именно этот фактор должен быть определяющим при разработке месторождений полезных ископаемых и строительстве новых городов. Знание законов функционирования биосферы позволит сделать природопользование и рациональным и безопасным, как для человека, так и для окружающей среды.

Список использованной литературы

1. «Биологическая экология»/ Степановских А.С., М., 2009, 791с.

2. «Каталог биосферы»/ М., 1991, 254с.

3. «Экология»/ Дре Ф., М., 1976, 164с.

4. «Экология»/ Одум Ю., М., 1986, Т.1- 328с.; Т.2 - 376с.

Размещено на Allbest.ru

Подобные документы

    История, концепция и понятие "экосистемы" (биогеоценоза). Ее основные компоненты, строение и механизмы функционирования. Пространственные, временные границы и ранжирование экосистемы (хорологический аспект). Искусственные экосистемы, созданные человеком.

    презентация , добавлен 01.02.2012

    Географическое положение степной экосистемы Евразии, особенности ее геологической структуры. Характеристика всех компонентов живой и неживой природы, продуктивность экосистемы, описание почв. Использование живых и неживых ресурсов данной системы.

    реферат , добавлен 22.04.2015

    Рассмотрение основных источников воздействия на экосистемы Байкальска, Слюднки, Улан-Удэнского, Иркутско-Черемховского и Северобайкальского промышленных узлов. Вопросы государственного регулирования охраны озера Байкал и задачи сохранения его экосистемы.

    реферат , добавлен 02.04.2014

    Понятие экологической системы как совокупности популяций различных видов растений, животных и микробов, взаимодействующих между собой и окружающей их средой. Наземные экосистемы, их роль в жизни человека. Особенности и факторы пресноводных местообитаний.

    презентация , добавлен 27.04.2014

    Описание пищевых цепей, регулирование численности популяций. Современная классическая экология. Основные компоненты экосистемы. Функциональные блоки организмов. Сущность терминов биосфера, биоценоз, биотоп, эдафотоп, климат, экотоп. Биомасса экосистемы.

    презентация , добавлен 27.03.2016

    Определение понятий биогеоценоза и экосистемы. Основные свойства биогеоценоза, механизмы его устойчивости. Приспособление организмов к совместной жизни. Виды биогеоценотических связей: симбиоз, мутуализм, нахлебничество, квартиранство и сотрапезничество.

    презентация , добавлен 06.03.2014

    Живое вещество как основа биосферы. Свойства и функции экосистемы. Системы взглядов на существование биосферы: антропоцентрическая и биоцентрическая. Виды загрязнения окружающей среды. Способы защиты окружающей среды. Внебюджетные экологические фонды.

    лекция , добавлен 20.07.2010

    Структурно-функциональная схема северо-западной водной экосистемы. Источники поступления биогенных элементов. Морфология озёрных котловин. Имитационное моделирование экосистемы проточного водоема. Абиотические и биотические компоненты в речном стоке.

    дипломная работа , добавлен 19.11.2017

    Научные подходы к определению критических границ антропогенной нагрузки на водные экосистемы. Загрязнение водных экосистем как критерий антропогенной нагрузки. Формирование экономического механизма нормирования антропогенной нагрузки на водные экосистемы.

    контрольная работа , добавлен 27.07.2010

    Понятие экологической системы. Структура биогеоценоза, отличие биогеоценоза от экосистемы. Воздействие экологических факторов на живой организм. Диапазон действия экологического фактора. Понятие предельно допустимой концентрации. Продуценты и консументы.

Экосистема включает в себя все живые организмы (растения, животные, грибы и микроорганизмы), которые в той или иной степени, взаимодействуют друг с другом и окружающей их неживой средой (климат, почва, солнечный свет, воздух, атмосфера, вода и т.п.).

Экосистема не имеет определенного размера. Она может быть столь же большой, как пустыня или озеро, или маленькой, как дерево или лужа. Вода, температура, растения, животные, воздух, свет и почва - все взаимодействуют вместе.

Суть экосистемы

В экосистеме каждый организм имеет свое собственное место или роль.

Рассмотрим экосистему небольшого озера. В нем, можно найти все виды живых организмов, от микроскопических до животных и растений. Они зависят от , такой как вода, солнечный свет, воздух и даже от количества питательных веществ в воде. (Нажмите , чтобы узнать подробнее о пяти основных потребностях живых организмов).

Схема экосистемы озера

Каждый раз, когда "постороннее" (живое существо(а) или внешний фактор, например, повышение температуры) вводятся в экосистему, могут произойти катастрофические последствия. Это происходит потому, что новый организм (или фактор) способен искажать естественный баланс взаимодействия и нести потенциальный вред или разрушение неродной экосистеме.

Как правило, биотические члены экосистемы, вместе с их абиотическими факторами зависят друг от друга. Это означает отсутствие одного члена или одного абиотического фактора может повлиять на всю экологическую систему.

Если нет достаточного количества света и воды, или, если почва содержит мало питательных веществ, растения могут погибнуть. Если растения погибают, животные, которые от них зависят также оказываются по угрозой. Если животные, зависящие от растений гибнут, то другие животные, зависящие от них также погибнут. Экосистема в природе работает одинаково. Все ее части должны функционировать вместе, чтобы поддерживать баланс!

К сожалению, экосистемы могут разрушиться в результате стихийных бедствий, таких как пожары, наводнения, ураганы и извержения вулканов. Человеческая деятельность также способствует разрушению многих экосистем и .

Основные виды экосистем

Экологические системы имеют неопределенные размеры. Они способны существовать на небольшом пространстве, например под камнем, гниющем пне дерева или в небольшом озере, а также занимать значительные территории (как весь тропический лес). С технической точки зрения, нашу планету можно назвать одной огромной экосистемой.

Схема небольшой экосистемы гниющего пня

Виды экосистем в зависимости от масштаба:

  • Микроэкосистема - экосистема небольшого масштаба, как пруд, лужа, пень дерева и т.д.
  • Мезоэкосистема - экосистема, такая, как лес или большое озеро.
  • Биом. Очень большая экосистема или совокупность экосистем с аналогичными биотическими и абиотическими факторами, такими как целый тропический лес с миллионами животных и деревьев, и множеством различных водных объектов.

Границы экосистем не обозначены четкими линиями. Их часто разделяют географические барьеры, такие как пустыни, горы, океаны, озера и реки. Поскольку границы не являются строго установленными, экосистемы, как правило, сливаются друг с другом. Вот почему озеро может иметь множество небольших экосистем со своими собственными уникальными характеристиками. Ученые называют такое смешивание "Экотон".

Виды экосистем по типу возникновения:

Помимо вышеперечисленных видов экосистем, существует также разделение на естественные и искусственные экологические системы. Естественная экосистема создается природой (лес, озеро, степь и т.д.), а искусственная - человеком (сад, приусадебный участок, парк, поле и др.).

Типы экосистем

Существует два основных типа экосистем: водные и наземные. Любые другие экосистемы мира относятся к одой из этих двух категорий.

Наземные экосистемы

Наземные экосистемы могут быть найдены в любом месте мира и подразделены на:

Лесные экосистемы

Это экосистемы, в которых есть обилие растительности или большое количество организмов, живущих в относительно небольшом пространстве. Таким образом, в лесных экосистемах плотность живых организмов достаточно высока. Небольшое изменение в этой экосистеме может повлиять на весь ее баланс. Также, в таких экосистемах можно встретить огромное количество представителей фауны. Кроме того, лесные экосистемы подразделяются на:

  • Тропические вечнозеленые леса или тропические дождевые леса: , получающие среднее количество осадков более 2000 мм в год. Они характеризуются густой растительностью, в которой преобладают высокие деревья, расположенные на разных высотах. Эти территории являются убежищем для различных видов животных.
  • Тропические лиственные леса: Наряду с огромным разнообразием видов деревьев, здесь также встречаются кустарники. Данный тип леса встречается в довольно многих уголках планеты и является домом для большого разнообразия представителей флоры и фауны.
  • : Имеют довольно небольшое количество деревьев. Здесь преобладают вечнозеленые деревья, которые обновляют свою листву в течение всего года.
  • Широколиственные леса: Расположены во влажных умеренных регионах, которые имеют достаточное количество осадков. В зимние месяца, деревья сбрасывают свою листву.
  • : Расположенная непосредственно перед , тайга определяется вечнозелеными хвойными деревьями, минусовыми температурами на протяжении полугода и кислыми почвам. В теплое время года здесь можно встретить большое количество перелетных птиц, насекомых и .

Пустынная экосистема

Пустынные экосистемы расположены в районах пустынь и получают менее 250 мм осадков в год. Они занимают около 17 % всей суши Земли. Из-за чрезвычайно высокой температуры воздуха, плохого доступа к и интенсивного солнечного света, и не столь богаты, как в других экосистемах.

Экосистема луга

Луга расположены в тропических и умеренных регионах мира. Территория луга в основном состоит из трав, с небольшим количеством деревьев и кустарников. Луга населяют пасущиеся животные, насекомоядные и растительноядные. Выделяется два основных вида экосистем луга:

  • : Тропические луга, имеющие сухой сезон и характеризующиеся отдельно растущими деревьями. Они обеспечивают пищей большое количество травоядных животных, а также являются местом охоты многих хищников.
  • Прерии (умеренные луга): Это область с умеренным травяным покровом, полностью лишенная крупных кустарников и деревьев. В прериях встречается разнотравье и высокая трава, а также наблюдаются засушливые климатические условия.
  • Степные луга: Территории сухих лугов, которые располагаются вблизи полузасушливых пустынь. Растительность этих лугов короче, чем в саваннах и прериях. Деревья встречаются редко, и как правило, находятся на берегах рек и ручьев.

Горные экосистемы

Горная местность обеспечивает разнообразный спектр местообитаний, где можно найти большое количество животных и растений. На высоте, обычно преобладают суровые климатические условия, в которых могут выжить только альпийские растения. Животные, обитающие высоко в горах, имеют толстые шубы для защиты от холодов. Нижние склоны, как правило, покрыты хвойными лесами.

Водные экосистемы

Водная экосистема - экосистема, расположенная в водной среде (например, реки, озера, моря и океаны). Она включает в себя водную флору, фауну, а также свойства воды, и подразделяется на два типа: морскую и пресноводную экологические системы.

Морские экосистемы

Являются крупнейшими экосистемами, которые покрывают около 71% поверхности Земли и содержат 97% воды планеты. Морская вода содержит большое количество растворенных минералов и солей. Морская экологическая система подразделяется на:

  • Океаническую (относительно мелкая часть океана, которая находится на континентальном шельфе);
  • Профундальную зону (глубоководная область не пронизанная солнечным светом);
  • Бентальную область (область, заселенная донными организмами);
  • Приливную зону (место между низкими и высокими приливами);
  • Лиманы;
  • Коралловые рифы;
  • Солончаки;
  • Гидротермальные жерла, где хемосинтезирующие составляют кормовую базу.

Многие виды организмов живут в морских экосистемах, а именно: бурые водоросли, кораллы, головоногие моллюски, иглокожие, динофлагелляты, акулы и т.д.

Пресноводные экосистемы

В отличие от морских экосистем, пресноводные охватывают лишь 0,8% поверхности Земли и содержат 0,009% от общего количества мировых запасов воды. Существует три основных вида пресноводных экосистем:

  • Стоячие: воды, где отсутствует течение, как бассейны, озера или пруды.
  • Проточные: быстро движущиеся воды, такие как ручьи и реки.
  • Водно-болотные угодья: места, в которых постоянно или периодически затопленная почва.

Пресноводные экосистемы являются местами обитания рептилий, земноводных и около 41% видов рыб в мире. Быстро движущиеся воды обычно содержат более высокую концентрацию растворенного кислорода, тем самым поддерживают большее биологическое разнообразие, чем стоячие воды прудов или озер.

Структура, компоненты и факторы экосистемы

Экосистема определяется как природная функциональная экологическая единица, состоящая из живых организмов (биоценоза) и их неживой окружающей среды (абиотической или физико-химической), которые взаимодействуют между собой и создают стабильную систему. Пруд, озеро, пустыня, пастбища, луга, леса и т.д. являются распространенными примерами экосистем.

Каждая экосистема состоит из абиотических и биотических компонентов:

Структура экосистемы

Абиотические компоненты

Абиотические компоненты представляют собой не связанные между собой факторы жизни или физическую среду, которая оказывает влияние на структуру, распределение, поведение и взаимодействие живых организмов.

Абиотические компоненты представлены в основном двумя типами:

  • Климатическими факторами , которые включают в себя дождь, температуру, свет, ветер, влажность и т.д.
  • Эдафическими факторами , включающие в себя кислотность почвы, рельеф, минерализацию и т.д.

Значение абиотических компонентов

Атмосфера обеспечивает живые организмы углекислым газом (для фотосинтеза) и кислородом (для дыхания). Процессы испарения, транспирации и происходят между атмосферой и поверхностью Земли.

Солнечное излучение нагревает атмосферу и испаряет воду. Свет также необходим для фотосинтеза. обеспечивает растения энергией, для роста и обмена веществ, а также органическими продуктами для питания других форм жизни.

Большинство живой ткани состоит из высокого процента воды, до 90% и даже более. Немногие клетки способны выжить, если содержание воды падает ниже 10%, и большинство из них погибают, когда вода составляет менее 30-50%.

Вода является средой, с помощью которой минеральные пищевые продукты поступают в растения. Она также необходима для фотосинтеза. Растения и животные получают воду с поверхности Земли и почвы. Основной источник воды - атмосферные осадки.

Биотические компоненты

Живые существа, включая растения, животных и микроорганизмы (бактерии и грибы), присутствующие в экосистеме, являются биотическими компонентами.

На основе их роли в экологической системе, биотические компоненты могут быть разделены на три основные группы:

  • Продуценты производят органические вещества из неорганических, используя солнечную энергию;
  • Консументы питаются готовыми органическими веществами, произведенными продуцентами (травоядные, хищники и );
  • Редуценты. Бактерии и грибы, разрушающие отмершие органические соединения продуцентов (растений) и консументов (животных) для питания, и выбрасывающие в окружающую среду простые вещества (неорганические и органические), образующихся в качестве побочных продуктов их метаболизма.

Эти простые вещества повторно производятся в результате циклического обмена веществ между биотическим сообществом и абиотической средой экосистемы.

Уровни экосистемы

Для понимания уровней экосистемы, рассмотрим следующий рисунок:

Схема уровней экосистемы

Особь

Особь - это любое живое существо или организм. Особи не размножаются с индивидуумами из других групп. Животные, в отличие от растений, как правило, относятся к этому понятию, поскольку некоторые представители флоры могут скрещиваться с другими видами.

В приведенной выше схеме, можно заметить, что золотая рыбка взаимодействует с окружающей средой и будет размножаться исключительно с представителями своего вида.

Популяция

Популяция - группа особей данного вида, которые живут в определенной географической области в данный момент времени. (Примером может служить золотая рыбка и представители ее вида). Обратите внимание, что популяция включает особей одного вида, которые могут иметь различные генетические отличия, такие как цвет шерсти/глаз/кожи и размер тела.

Сообщество

Сообщество включает в себя всех живых организмов на определенной территории, в данный момент времени. В нем могут присутствовать популяции живых организмов разных видов. В приведенной выше схеме, обратите внимание, как золотые рыбы, лососёвые, крабы и медузы сосуществуют в определенной среде. Большое сообщество, как правило, включает в себя биоразнообразие.

Экосистема

Экосистема включает в себя сообщества живых организмов, взаимодействующих с окружающей средой. На этом уровне живые организмы зависят от других абиотических факторов, таких как камни, вода, воздух и температура.

Биом

Простыми словами, представляет собой совокупность экосистем, имеющих схожие характеристики с их абиотическими факторами, адаптированными к окружающей среде.

Биосфера

Когда мы рассматриваем различные биомы, каждый из которых переходит в другой, формируется огромное сообщество людей, животных и растений, живущих в определенных местах обитания. является совокупностью всех экосистем, представленных на Земле.

Пищевая цепь и энергия в экосистеме

Все живые существа должны питаться, чтобы получать энергию, необходимую для роста, движения и размножения. Но чем же эти живые организмы питаются? Растения получают энергию от Солнца, некоторые животные едят растения, а другие едят животных. Это соотношение кормления в экосистеме, называется пищевой цепью. Пищевые цепи, как правило, представляют последовательность того, кто кем питается в биологическом сообществе.

Ниже приведены некоторые живые организмы, которые могут разместиться в пищевой цепи:

Схема пищевой цепи

Пищевая цепь - это не одно и то же, что и . Трофическая сеть представляет собой совокупность многих пищевых цепей и является сложной структурой.

Передача энергии

Энергия передается по пищевым цепям от одного уровня к другому. Часть энергии используется для роста, размножения, передвижения и других потребностей, и не доступна для следующего уровня.

Более короткие пищевые цепи сохраняют больше энергии, чем длинные. Израсходованная энергия поглощается окружающей средой.

Экосистема относится к ключевым понятиям экологии. Само слово расшифровывается как "экологическая система". Термин был предложен экологом А. Тенсли в 1935 году. Экосистема объединяет несколько понятий:

  • Биоценоз — сообщество живых организмов
  • Биотоп — среда обитания этих организмов
  • Виды связей организмов в данном ареале обитания
  • Обмен веществ, который происходит между этими организмами в данном биотопе.

То есть, по сути, экосистема — это объединение компонентов живой и неживой природы, между которыми происходит обмен энергией. А благодаря этому обмену возможно создание условий, необходимых для поддержания жизни. Основой любой экосистемы на нашей планете является энергия солнечного света.

Для классификации экосистем ученые выбрали один признак — среду обитания. Так удобнее выделять отдельные экосистемы, так как именно ареал обуславливает климатические, биоэнергетические и биологические особенности. Рассмотрим виды экосистем.

Природные экосистемы образуются на земле самостихийно, при участии сил природы. Например, естественные озера, реки, пустыни, горы, леса и т.д.

Агроэкосистемы — это один из видов искусственных экосистем, созданных человеком. Они отличаются слабыми связями между компонентами, меньшим видовым составом организмов, искусственностью взаимообмена, но при этом именно агроэкосистемы наиболее продуктивны. Их человек создает ради получения сельскохозяйственной продукции. Примеры агроэкосистем: пашни, пастбища, сады, огороды, поля, насаженные леса, искусственные пруды...

Лесные экосистемы - это сообщество живых организмов, обитающих на деревьях. На нашей планете треть суши занимают именно леса. Почти половина из них — тропические. Остальные — хвойные, лиственные, смешанные, широколиственные.

В структуре лесной экосистемы выделяют отдельные ярусы. В зависимости от высоты яруса меняется состав живых организмов.

Главными в экосистеме леса являются растения, причем основным является один (реже несколько) видов растения. Все остальные живые организмы — либо потребители, либо разрушители, так или иначе влияющие на обмен веществ и энергией...

Растения и животные являются лишь составной частью какой-либо экосистемы. Так, животные — это важнейший природный ресурс, без которого невозможно существование экосистемы. Они более мобильны, чем растения. И, несмотря на то, что по видовому разнообразию фауна проигрывает флоре, именно животные обеспечивают устойчивость экосистемы, активно участвуя в обмене веществ и энергии.

При этом, все животные образуют генетический фонд планеты, обитая только в тех экологических нишах, где для них созданы все условия для выживания и размножения.

Растения же являются основополагающим фактором для существования любой из экосистем. Именно они чаще всего являются редуцентами — то есть, организмами, перерабатывающими солнечную энергию. А солнце, как уже отмечалось выше — основа существования жизненных форм на Земле.

Если рассматривать представителей флоры и фауны по отдельности, то каждое животное и растение представляет собой микроэкосистему на той или иной стадии существования. Например, ствол дерева по мере его развития — это одна цельная экосистема. Ствол упавшего дерева — это уже другая экосистема. Так же и с животными: эмбрион в стадии размножения можно считать микроэкосистемой...

Водные экосистемы - это системы, приспособленные к жизни в воде. Именно вода определяет уникальность того сообщества живых организмов, которые в ней обитают. Разнообразие видов животных и растений, состояние, устойчивость водной экосистемы зависит от пяти факторов:

  • Солености воды
  • Процента содержащегося в ней кислорода
  • Прозрачности воды в водоеме
  • Температуры воды
  • Доступности питательных веществ.

Принято разделять все водные экосистемы на два больших класса: пресноводные и морские. Морские занимают более 70% земной поверхности. Это океаны, моря, соленые озера. Пресноводных меньше: большая часть рек, озер, болота, пруды и другие более мелкие водоемы...

Устойчивостью экосистемы называют способность данной системы противостоять изменения внешних факторов и сохранять свою структуру.

В экологии принято выделять два вида устойчивости ЭС:

  • Резистентную — это вид устойчивости, при которой экосистема способна сохранять свою структуру и функциональность в неизменном виде, несмотря на изменения внешних условий.
  • Упругую — этот вид устойчивости присущ тем экосистемам, которые могут восстанавливать свою структуру после изменения условий или вовсе после разрушения. Например, когда лес восстанавливается после пожара, говорят именно об упругой устойчивости экосистемы.
    Экосистема человека

В человеческой экосистеме доминатным видом будет человек. Такие экосистемы удобнее разделять по сферам:

Экосистема представляет собой устойчивую систему компонентов живого и неживого происхождения, в которой участвуют, как и объекты неживой природы, так и объекты живой природы: растения, животные и человек. Каждый человек, вне зависимости от места рождения и проживания (будь то шумный мегаполис или деревня, остров или большая земля, пр.) является частью экосистемы....

В настоящее время влияние человека на любую экосистему ощущается повсеместно. В своих целях человек либо разрушает, либо улучшает экосистемы нашей планеты.

Так, расточительное отношение к земле, вырубка лесов, осушение болот относят к разрушительному воздействию человека. И наоборот, создание заповедников, восстановление популяций животных способствуют восстановлению экобаланса Земли и является созидательным влиянием человека на экосистемы...

Главное различие таких экосистем состоит в способе их образования.

Естественные, или природные экосистемы создаются при участии сил природы. Человек либо вообще не оказывает на них влияния, либо влияние есть, но незначительное. Самой большой природной экосистемой является наша планета.

Искусственные экосистемы называют еще антропогенными. Они создаются человеком ради получения "выгоды" в виде продуктов питания, чистого воздуха, других продуктов, необходимых для выживания. Примеры: сад, огород, ферма, водохранилище, оранжерея, аквариум. Даже космический корабль можно рассматривать как пример антропогенной экосистемы.

Главные отличия искусственных экосистем от естественных.

Все многообразие организмов на нашей планете неразрывно связано между собой. Нет такого существа, которые сумело бы существовать изолированно от всех, строго индивидуально. Однако не только организмы находятся в тесной взаимосвязи, но и факторы внешней и внутренней среды влияют на весь биом. Вместе весь комплекс живой и неживой природы представляют структура экосистем и их свойства. Что это за понятие, какими параметрами характеризуется, попробуем разобраться в статье.

Понятие об экосистемах

Что такое экосистема? С точки зрения совокупная совместная жизнедеятельность всех видов организмов, независимо от классовой принадлежности и факторов окружающей среды как биотических, так и абиотических.

Свойства экосистем объясняются их характеристикой. Первые упоминания данного термина появились в 1935 году. А. Тенсли предложил использовать его для обозначения "комплекса, состоящего не только из организмов, но и окружающей их среды". Само по себе понятие достаточно обширное, это самая крупная единица экологии, а также важное. Другое название - биогеоценоз, хотя различия между этими понятиями все же небольшое есть.

Основное свойство экосистем заключается в непрерывном взаимодействии внутри них органического и неорганического вещества, энергии, перераспределении тепла, миграции элементов, комплексном воздействии живых существ друг на друга. Всего можно выделить несколько основных характеристических черт, которые называют свойствами.

Основные свойства экосистем

Самых главных из них можно выделить три:

  • саморегуляция;
  • устойчивость;
  • самовоспроизведение;
  • смена одной на другую;
  • целостность;
  • эмерджентные свойства.

На вопрос о том, каково основное свойство экосистем, можно ответить по-разному. Важны все из них, ведь только их совокупное наличие позволяет существовать данному понятию. Рассмотрим подробно каждую характеристическую черту, чтобы усвоить ее важное значение и разобраться в сути.

Саморегуляция экосистем

Это главное свойство экосистемы, которое подразумевает самостоятельное управление жизнью внутри каждого биогеоценоза. То есть группа организмов, которая находится в тесной взаимосвязи с другими живыми существами, а также факторами внешней среды, оказывает непосредственное влияние на всю структуру в целом. Именно их жизнедеятельность может повлиять на устойчивость и саморегуляцию экосистемы.

Например, если говорить о хищниках, то они поедают травоядных животных одного вида ровно до тех пор, пока численность их не сократится. Дальше поедание прекращается, и хищник переключается на другой источник питания (то есть иной вид травоядного существа). Таким образом, выходит, что полностью вид не уничтожается, он сохраняется в покое до восстановления необходимого показателя численности.

В пределах экосистемы не может произойти естественного исчезновения вида в результате поедания другими особями. В этом и заключается саморегуляция. То есть животные, растения, грибы, микроорганизмы взаимно контролируют друг друга, несмотря на то, что являются пищей.

Также саморегуляция - это основное свойство экосистем еще и потому, что благодаря ей происходит контролируемый процесс преобразования разных видов энергии. соединения, элементы - все находятся в тесной взаимосвязи и общем круговороте. Растения непосредственно используют солнечную энергию, животные поедают растения, переводя эту энергию в химические связи, после их отмирания микроорганизмы снова разлагают их до неорганики. Процесс непрерывен и цикличен без вмешательства извне, что и называется саморегуляцией.

Устойчивость

Есть и другие свойства экосистем. Саморегуляция тесно связана с устойчивостью. То, сколько просуществует та или иная экосистема, как она сохранится, и будут ли происходить смены на другие, зависит от ряда причин.

Истинно устойчивой считается та, внутри которой нет места вмешательству со стороны человека. В ней постоянно стабильно высокая численность всех видов организмов, не происходят изменения под влиянием окружающих условий либо они незначительны. В принципе, любая экосистема может быть устойчива.

Нарушить это состояние может человек своим вмешательством и сбоем установленного порядка (вырубка леса, отстрел животных, уничтожение насекомых и прочее). Также на устойчивость может повлиять сама природа, если климатические условия резко изменятся, не дав организмам времени приспособиться. Например, стихийные бедствия, смена климата, сокращение количества воды и прочее.

Чем больше разнообразие видов организмов, тем дольше существуют экосистемы. - устойчивость и саморегуляция - это основа, на которой вообще держится это понятие. Существует термин, которым обобщают эти характеристики, - гомеостаз. То есть поддержание постоянства во всем - разнообразии видов, их численности, внешних и внутренних факторах. тундры чаще подвергаются сменам, нежели тропические леса. Ведь в них генетическое разнообразие живого не столь велико, а значит. и выживаемость резко снижается.

Самовоспроизводимость

Если хорошо подумать над вопросом о том, каково основное свойство экосистем, то можно прийти к выводу, что и самовоспроизводимость не менее важное условие их существования. Ведь без постоянного воспроизведения таких компонентов, как:

  • организмы;
  • почвенный состав;
  • прозрачность воды;
  • кислородный компонент воздуха и прочее.

Сложно говорить об устойчивости и саморегуляции. Для того же, чтобы биомасса постоянно возрождалась и численность поддерживалась, важно наличие достаточного количества еды, воды, а также благоприятные условия жизни. Внутри любой экосистемы происходит постоянная замена старых особей на молодых, больных на здоровых, сильных и выносливых. Это нормальное условие существования любой из них. Это возможно только при условии своевременной самовоспроизводимости.

Проявление свойств экосистемы подобного рода - это залог генетического сохранения аллелей каждого вида. Иначе целые роды и типы, классы и семейства живых существ подвергались бы исчезновению без последующего восстановления.

Сукцессия

Также важные свойства экосистем - смена экосистем. Данный процесс получил название сукцессии. Происходит он под влиянием смены внешних абиотических факторов и занимает от нескольких десятков лет до миллионов. Суть этого явления - последовательная замена одной экосистемы на другую под влиянием как внутренних факторов, возникающих между живыми организмами, так и внешних условий неживой природы в течение продолжительного времени.

Также весомой причиной сукцессий является хозяйственная деятельность человека. Так, леса сменяются лугами и болотами, озера превращаются в пустыни или поля зарастают деревьями и формируется лесной массив. Естественно, что при этом фауна также претерпевает существенные изменения.

До каких пор будет происходить сукцессия? Ровно до той стадии, когда сформируется максимально удобный и приспособленный к конкретным условиям биогеоценоз. Например, хвойные леса Дальнего Востока (тайга) - это уже устоявшийся коренной биоценоз, который дальше изменяться уже не будет. Он формировался тысячелетиями, за это время происходила не одна смена экосистемы.

Эмерджентные свойства

Эти свойства экосистем представляют собой вновь возникшие, новые и до этого не характерные признаки, появляющиеся в биогеоценозе. Возникают они в результате комплексной работы всех или нескольких участников общей системы.

Типичным примером может служить сообщество коралловых рифов, которое явилось результатом взаимодействия между кишечнополостными и водорослями. Кораллы - это основной источник огромного количества биомассы, элементов, соединений, которые до них в этом сообществе не существовали.

Функции экосистем

Свойства и функции экосистем находятся в тесной взаимосвязи между собой. Так, например, такое свойство, как целостность, подразумевает поддержание постоянного взаимодействия между всеми участниками. В том числе и с А одной из функций является как раз слаженный переход различных видов энергии друг в друга, который возможен при условии внутренней циркуляции элементов между всеми звеньями популяции и самими биоценозами между собой.

В целом же роль экосистем определяется теми типами взаимодействий, которые существуют внутри них. Любой биогеоценоз должен давать определенный биологический прирост биомассы в результате своего существования. Это и будет одной из функций. Прирост зависит от совокупности факторов живой и неживой природы и может колебаться в широких пределах. Так, биомасса гораздо больше в зонах с повышенной влажностью и хорошей освещенностью. Значит, и прирост ее будет значительно больше, по сравнению с таковым, например, в пустыне.

Еще одна функция экосистемы - трансформационная. Она подразумевает направленное изменение энергии, преобразование ее в различные формы при действии живых существ.

Структура

Состав и свойства экосистем определяют и их структуру. Какое строение имеет биогеоценоз? Очевидно, что оно включает в себя все основные звенья (как живые, так и абиотические). Также важно, что в целом вся структура представляет собой замкнутый цикл, что еще раз подтверждает основные свойства экосистем.

Существует два основных крупных звена любого биогеоценоза.

1. Экотоп - совокупность факторов абиотической природы. Он, в свою очередь, представлен:

  • климатопом (атмосфера, влажность, освещенность);
  • эдафотопом (почвенный грунтовый компонент).

2. Биоценоз - совокупность всех типов живых существ в данной экосистеме. Включает в себя три основных звена:

  • зооценоз - все животные существа;
  • фитоценоз - все растительные организмы;
  • микробоценоз - все бактериальные представители.

По приведенной структуре очевидно, что все звенья тесно взаимосвязаны между собой и образуют единую сеть. Эта связь проявляется, в первую очередь, в поглощении и преобразовании энергии. Иными словами, в пищевых цепях и сетях внутри популяции и между ними.

Подобное строение биогеоценоза было предложено В. Н. Сукачевым в 1940 году и остается актуальным на сегодняшний день.

Зрелая экосистема

Возраст разных биогеоценозов может варьироваться в широких пределах. Естественно, что характеристические черты молодой и зрелой экосистемы должны различаться. Так и происходит.

Какое свойство зрелой экосистемы отличает ее от сравнительно недавно сформировавшейся? Таких несколько, рассмотрим все:

  1. Виды каждой популяции сформированы, устойчивы и не замещаются (вытесняются) другими.
  2. Разнообразие особей постоянно и больше не изменяется.
  3. Все сообщество свободно саморегулируется, наблюдается высокая степень гомеостаза.
  4. Каждый организм полностью приспособлен к условиям окружающей среды, сосуществование биоценоза и экотопа максимально комфортное.

Каждая экосистема будет претерпевать сукцессии до тех пор, пока не установится ее климакс - постоянное наиболее продуктивное и приемлемое видовое разнообразие. Именно тогда биогеоценоз начинает постепенно преобразовываться в зрелое сообщество.

Группы организмов внутри биогеоценоза

Естественно, что все живые существа внутри одной экосистемы связаны между собой в единое целое. При этом они же оказывают и огромное влияние на почвенный воду - на все абиотические составляющие.

Принято выделять несколько групп организмов по их способности поглощать и преобразовывать энергию внутри каждого биогеоценоза.

  1. Продуценты - те, кто производит органическое вещество из неорганических компонентов. Это зеленые растения и некоторые виды бактерий. Их способ поглощения энергии - автотрофный, они непосредственно усваивают солнечное излучение.
  2. Консументы или биофаги - те, кто потребляет готовое органическое вещество путем поедания живых существ. Это плотоядные животные, насекомые, некоторые растения. Сюда же относятся и травоядные представители.
  3. Сапротрофы - организмы, способные разлагать органику, таким способом потребляя питательные вещества. То есть питаются мертвыми останками растений и животных.

Очевидно, что все участники системы находятся во взаимозависимом положении. Без растений не смогут получать пищу травоядные, а без них погибнут хищники. Сапрофаги не переработают соединения, не восстановится количество нужных неорганических соединений. Все эти взаимоотношения получили название В больших сообществах цепи переходят в сети, образуются пирамиды. Изучением вопросов, связанных с трофическими взаимодействиями, занимается наука экология.

Роль человека в воздействии на экосистемы

Об этом очень много говорится сегодня. Наконец-то человек осознал весь масштаб урона, который за последние 200 лет был нанесен им экосистеме. Стали очевидными последствия такого поведения: кислотные дожди, парниковый эффект, глобальное потепление, сокращение запасов пресной воды, оскуднение почвы, сокращение лесных массивов и прочее. Можно бесконечно долго обозначать проблемы, ведь их накопилось огромное множество.

Все это и является той самой ролью, которую сыграл и играет до сих пор человек в экосистеме. Массовая урбанизация, индустриализация, развитие техники, освоение космического пространства и прочие людские действия приводят не только к усложнению состояния неживой природы, но и к вымиранию и сокращению численности биомассы планеты.

Любая экосистема нуждается в защите со стороны человека, особенно сегодня. Поэтому задача каждого из нас - обеспечить ей поддержку. Для этого не нужно много - на правительственном уровне разрабатываются методы защиты природы, простым людям следует лишь придерживаться установленных правил и стараться сохранять экосистемы в неизменном виде, не вводя в их состав избыточного количества разных веществ и элементов.